Theorem 8.33 (Vitali). Let
$$(f_n) \in L^1(X)$$
. The sequence (f_n) is convergent in L^1 if and only if
(1) (f_n) converges in measure,
(2) (f_n) is uniformly integrable,
(3) (tightness) there exists $F \in \Sigma$ with $\mu(F) < \infty$ such that $\int_{F^c} |f_n| d\mu < \varepsilon$ for all n .
Proof: $\forall \mathcal{L} \geq \mathcal{O}_j$

Theorem 8.34. If
$$\lim_{\lambda \to \infty} \sup_{n} \int_{\{|f_{n}| > \lambda\}} |f_{n}| d\mu = 0$$
, then (f_{n}) is uniformly integrable.
Theorem 8.35. If there exists an increasing function $\varphi: [0, \infty) \to [0, \infty)$ such that $\lim_{x \to \infty} \frac{\varphi(x)}{x} = \infty$, and $\sup_{n} \int_{X} \varphi(|f_{n}|) d\mu < \infty$, then (f_{n}) is uniformly integrable.
Remark 8.36. The hypothesis in both the above theorems are equivalent.
Remark 8.37. If additionally $\sup_{n} \int_{X} |f_{n}| d\mu < \infty$, then the converse of both the above theorems are true.
Remark 8.36. The hypothesis $\int_{X} |f_{n}| d\mu < \infty$, then the converse of both the above theorems are true.
Remark 8.37. If additionally $\sup_{n} \int_{X} |f_{n}| d\mu < \infty$, then the converse of both the above theorems are true.
Remark 8.36. The hypothesis $\int_{X} |f_{n}| d\mu < \infty$, then the converse of both the above theorems are true.
Remark 8.37. If additionally $\sup_{n} \int_{X} |f_{n}| d\mu < \infty$, then the converse of both the above theorems are true.
Remark 8.36. The hypothesis $\int_{X} |f_{n}| d\mu < \infty$, then the converse of both the above theorems are true.
Remark 8.37. If additionally $\sup_{n} \int_{X} |f_{n}| d\mu < \infty$, then the converse of both the above theorems are true.
Remark 8.36. The hypothesis $\int_{X} |f_{n}| d\mu < \infty$, then the converse of both the above theorems are true.
Remark 8.37. If $\int_{X} |f_{n}| d\mu < \infty$, then the converse of both the above theorem are true.
Remark 8.36. The hypothesis $\int_{X} |f_{n}| d\mu < \infty$, then the converse of both the above theorem are true.
Remark 8.37. If $\int_{X} |f_{n}| d\mu < \infty$, \int_{X}

 $N_{mr} p(E) < S \implies \int |f_m| = \int |f_m| + \int |f_m| \\ E = E \cap S[m] > \lambda S = E \cap S[f_m] \le \lambda S$ $\leq \frac{z}{2} + S \cdot \lambda$ Char $S = \frac{2}{2\lambda} \Rightarrow QED_{-}$

 $\mathbb{P}_{q} = \left\{ \begin{array}{ccc} 8.35 \\ \hline q \\ \hline \end{array} \right\} \xrightarrow{(q(n))}{n} \xrightarrow{n \to \infty} \infty, \quad \mathbb{P}_{int}, \quad \mathbb{L}_{sup} \int \mathbb{P}([q_n]) d\mu < \infty$ NTS Et is U.I. Will dons time and fitted type = $0 \implies QED$. $\lambda \gg co$ $m = 2if_{m} > \lambda^{2}$ $\rightarrow \downarrow z > 0; \rightarrow \exists \lambda_0 + \forall \lambda > \lambda_0$ $\psi(\lambda) > z \rightarrow z \rightarrow \lambda \leq z \psi(\lambda).$ $\Rightarrow \int |f_{m}| \leq \mathcal{E} \int \varphi(|f_{m}|) \leq \mathcal{E} \int \varphi(|f_{m}|) \leq \mathcal{E} \int \varphi(|f_{m}|) \leq \mathcal{E} \sup_{m} \int \varphi(|f_{m}|) \\ \mathcal{E} \int \varphi(|f_{m}|) \geq \lambda_{0} \mathcal{E} \quad X \quad (X = 1)$

Corollary 8.38. If $(f_n) \to f$ in measure, $\mu(X) < \infty$ and $\sup_n ||f||_p < \infty$ for any p > 1, then $(f_n) \to f$ in L^q for every $q \in [1, p)$.

Since check for
$$q = 1$$
:
NTS $(f_m) \longrightarrow f$ in \mathcal{L}' .
Vitali : ETS (f_m) is $V \cdot I$. $(have (f_w) \stackrel{*}{\to} f \stackrel{*}{\times} \frac{1}{2} \frac{1}{2$

9. Signed Measures 9.1. Hanh and Jordan Decomposition Theorems. **Definition 9.1.** We say $\mu: \Sigma \to [-\infty, \infty]$ is a signed measure if: (1) The range of μ doesn't contain both $+\infty$ and $-\infty$. (2) $\mu(\emptyset) = 0$ (3) If $A_i \in \Sigma$ are countably many pairwise disjoint sets then $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$. *Example* 9.2. Let $f \in L^1(X,\mu)$, and define ν by $|\nu(\underline{A}) \models \int_A f d\mu$. Then ν is a signed measure, and we write $d\nu \neq f d\mu$. Example (9.3./If μ , ν are two (positive) measures such that either one is finite, then $\mu - \nu$ is finite. A Grand **Theorem 9.4** (Jordan Decomposition). Any signed measure can be written (uniquely) as the difference of two mutually singular positive measures.

(Note: It is a signed measure
$$\& A \subseteq \mathbb{R} \neq p(A) \leq p(B)$$
.)

Definition 9.5. We say $\underline{A} \in \underline{\Sigma}$ is a *negative set* if $\mu(B) \leq 0$ for all measurable sets $\underline{B \subseteq A}$. **Proposition 9.6.** If $\mu(A) \in (-\infty, \infty)$ then there exists $B \subseteq A$ such that \underline{B} is negative and $\mu(B) \leq \mu(A)$. Lema: $P_{f_{i}}^{e} \quad (a_{i} (i) \circ \mu(A) \ge 0)$ \rightarrow (here $B = \phi$. $\ni QED$. $(A = (2) \quad \mu(A) < 0$ If suf {m(E) | E C A (SO >> A is -ve, chan B=A >> QED. If $\exp\left\{\mu E\right\} \left(E \subseteq A_{2}^{2} = 8 > 0 \text{ find} \quad L \in \mathcal{F}_{1} \rightarrow \mu(E_{1}) \geq \frac{S_{1}}{2} \wedge 1.$ (3) Let $S_2 = site \left\{ \mu(E) \mid E \subseteq A - E \right\} \in sind E_2 + \mu(E_2) \ge \frac{S_2}{2} \wedge 1$ Let $S_n : Continue (E) | E \subseteq A - \bigcup_{k \in \mathbb{Z}} \mathcal{E}_k \stackrel{\text{find}}{\subset} E_{n_k} \xrightarrow{\rightarrow} \mu(E_n) \geqslant \frac{S_n}{2} \wedge 1$

Note $Z_{k}(E_{kk}) < \omega \Rightarrow Z_{k}^{S} < \omega$.

Alco, E \subseteq $AEB \supset E \subseteq A - \bigcup_{i=1}^{M-1} E_k \supset p(E) \leq S_m \xrightarrow{M \supset O} O$

 $\Rightarrow \mu(E) \leq 0.$

QED.