Example of a regater meas in a mon T-fante aphe

$$
X=\mathbb{R} \quad\left(\begin{array}{ll}
\lambda \mathrm{ums})
\end{array}\right.
$$

$y=R$ (cuntig meses, diseande top)
$X \times Y \rightarrow$ den ds
$\mu: \underline{u} \subseteq x, y$ dpm

$A \subseteq X_{\times} Y \quad B_{\text {ond }}, \quad \mu(A)=\inf \{M(U) \mid U \geq A$ dab $\}$.

Yon chack or gines a negular messme an $X \times Y$
Q: Wat is the mersme of $\{0\} \times Y=\infty$
Q: $K \subseteq\{0\} \times y$ is ct What is $h(k)=0$
(linus necesoy C-eqe an thW $5 / 6$)

Definition 8.16. Define an equivalence relation on \mathcal{L}^{p} by $f \sim g$ if $f=g$ almost everywhere.
Definition 8.17. Define $\mathcal{L}^{p}(X)=\mathcal{L}^{p}(X) / \sim$.
Remark 8.18. We will always treat elements of $L^{p}(X)$ as functions, implicitly identifying a function with its equivalence class under the relation \sim. In order to be logically correct, however, we need to ensure that every operation we perform on functions respects the equivalence relation \sim.
Theorem 8.19. For $p \in[1, \infty], L^{p}(X)$ is a Banach spack.

Theorem 8.20 (Hölder's inequality). Say $\underline{p, q \in[1, \infty]}$ with $1 / p+1 / q=1$. If $f \in L^{p}$ and $g \in L^{q}$, then $f g \in L^{1}$ and $\left|\int_{X} f g d \mu\right| \leqslant\|f\|_{p}\|g\|_{q}$.
Remark 8.21. The relation between p and q can be motivated by dimension counting, or scaling.
Let $\varepsilon>0 \quad X=\mathbb{R}^{\text {而 } d}$

$$
f_{q}(x)=f\left(\frac{x}{\varepsilon}\right), \quad g_{\varepsilon}^{(x)}=g\left(\frac{x}{\varepsilon}\right)
$$

(1) $\int_{\mathbb{R}^{d}} f_{\varepsilon} g_{\varepsilon}=\frac{d}{=} \int_{\mathbb{R}^{d}} f\left(\frac{x}{\varepsilon}\right) g\left(\frac{x}{q}\right) \frac{d x}{\varepsilon^{d}}=\varepsilon^{d} \int_{\mathbb{R}} d f g d \lambda$.
(2) $\left\lvert\, f_{\varepsilon} l_{p}=\left(\varepsilon^{d} \int_{\mathbb{R}^{d}} \left\lvert\,\left(\left.\left(\frac{x}{\varepsilon}\right)\right|^{p} \frac{d x}{\varepsilon d}\right)^{1 / p}=\varepsilon^{d / p}\| \|_{\|_{p}}\right.\right.\right.$
(3) $\lg \|_{q}=$

$$
=\varepsilon^{d / q}\|g\|_{q}
$$

If Held ic $f_{\text {mas }} \Rightarrow\left|\int_{R} f_{c} g_{\varepsilon} d x\right| \leq\left\|f_{\varepsilon}\right\|_{p} \mid g_{\varepsilon} \|_{q}$
$(\sqrt{d}) \int_{\mathbb{R}^{d}} f^{h} \mid$

Sine this is the $\forall \varepsilon$, mast hame $d=\frac{d}{\phi}+\frac{d}{q} \Leftrightarrow \frac{1}{\phi}+\frac{1}{q}=1$

Brute force proof of Theorem 8.20
Stupid.
$\rightarrow 0$

$$
\begin{aligned}
& \text { TIndation } \sum_{1}^{N} x_{i} y_{i} \leqslant\left(\sum_{1}^{N} x_{i}^{p}\right)^{1 / p}\left(\sum_{1}^{N} y_{i}^{q}\right)^{1 / q} \\
& \left(x_{i}, y_{i} \geq 0\right) \text {. }
\end{aligned}
$$

(2) $S_{a y}$

$$
\begin{aligned}
& c_{i} \geqslant 0, \quad \sum x_{i} y_{i} c_{i}=\sum x_{i} c_{i}^{1 / q} y_{i} c_{i}^{1 / q} \\
& \leqslant\left(\sum x_{i}^{p} c_{i}\right)^{1 / p}\left(\sum y_{i}^{q} c_{i}\right)^{1 / q}
\end{aligned}
$$

(3) \Rightarrow Holde is tue for simble fors
(4) Apparisute $\Rightarrow Q \in D$.

Proof of Theorem 8.20 using Young's inequality.
Theorem 8.22 (Young's inequality). If $x, y \geqslant 0, \mid 1 / p+1 / q=1$ then $x y \leqslant x^{p} / p+y^{q} / q$.
Pf: Calamus $\operatorname{sim}()$
$P \gamma_{2}: \quad(n \times$ is cancans \& imeonersig.

$$
\Rightarrow c \in(0,1), \quad \alpha, \beta>0
$$

$c \ln \alpha+(1-c) \ln \beta, \leqslant \ln (c \alpha+(1-c) \beta)$

$c \alpha+(1-c) \beta$.

$$
\begin{array}{ll}
c=\frac{1}{p} & 1-c=\frac{1}{q} \\
\alpha=x^{p} & \beta=y^{\gamma} \tag{un}
\end{array}
$$

If of tudur: NTS $\left|\int_{x} f f\right|<\left.\left|f_{p}\right| g\right|_{q}$

$$
\begin{aligned}
& \text { (Yar chu } f=1, q=\infty \text {) }
\end{aligned}
$$

Lemma 8.23 Duality). If $p \in[1, \infty), 1 / p+1 / q=1$, then $\|f\|_{p}=\sup _{g \in L^{q}-0} \frac{1}{\|g\|_{q}} \int_{X} f g d \mu=\sup _{\|g\|_{q}=1} \int_{X} f g d \mu$ 保
Remark 8.24. For $p=\infty$ this is still true if X is σ-finite.
Pf of Dally; $\mathbb{1} \frac{1}{\|g\|_{q}} \int_{x} f g d h \leq\| \|_{p} \quad\left(H_{0} \mid d e r\right)$.

$$
\Rightarrow \sup _{g \in q^{2}-\{0\}} \frac{1}{\|g\|_{q}} \int_{x} f g d r \leq\|f\|_{p}
$$

(2)NTS equality. Chare $g=\left.1\right|^{\phi-1} \operatorname{sign}(f) \Rightarrow f g=|f|^{\phi}$.

$$
\|q\|_{q}^{q}=\int_{x}|g|^{q} d \mu=\int_{x}|f|^{q q-q}=\int_{x}|f|^{p}
$$

$$
\begin{aligned}
& \Leftrightarrow\|g\|_{q}^{q}=\|f\|_{p}^{p} \\
& \frac{1}{p}+\frac{1}{q}=1 \Leftrightarrow p q=p+q \\
& \begin{array}{r}
\Rightarrow \frac{1}{|g| q} \int_{x} d g d q=\frac{1}{|g|_{\mid}} \int_{x}|f|^{p} d \mu=\frac{|f|^{p}}{\lg \mid q}=\left\|\left.f\right|_{p} ^{p\left(1-\frac{1}{q}\right)}=\mid\right\|_{p} \\
\text { QED. }
\end{array}
\end{aligned}
$$

