Theorem 8.5. If $(f_n) \to f$ almost everywhere and $\mu(X) < \infty$, then $(f_n) \to f$ in measure. $\exists \textbf{Lemma 8.6 (Egorov). } If (f_n) \to f almost everywhere and \mu(X) < \infty, for every \varepsilon > 0 there exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon a and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon a and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon a and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon a and the exists A_{\varepsilon} such that \mu(A_{\varepsilon}^c) < \varepsilon a and the exists A$ $(f_n) \to f$ uniformly on A_{ε} . **Question 8.7.** Does this imply $(f_n) \to f$ uniformly almost everywhere? $(4,) \rightarrow f$ i tero > Egover > hast time. Im 8.5: Pick 2>0. NTS $\mu(|f_n-f|>2) \longrightarrow 0$ $\mu(|f_n-f|>2) \longrightarrow 0$ Egovor V=> 48>0, 3A8 + m(AC) <8 & for > f mit on Ag \Rightarrow $\frac{1}{2} |_{M} - \frac{1}{2} | > \varepsilon (\subseteq A_{5}^{c} \lor |_{age} n.$

Proof of Theorem 8.5

 $\Rightarrow \mu\left(\{|_{m}-\xi|>\epsilon\}\right) \leq \mu(A_{8}^{c}) = 8$ OFD

along s.s. $t_{M} \rightarrow f$ a.e $(\mu(X) < \omega)$ alg s.e. $(\phi < \infty)$

Proposition 8.8. If $(f_n) \to f$ in measure then (f_n) need not converge to f almost everywhere.

$$\begin{split} & E_{3} \circ \mathcal{P}_{1} \text{ by Picture } f_{1} = 1 \\ & f_{2} = 1 \\ & f_{3} = 1 \\ & f_{4} = 1 \\ & f_{4}$$

Proposition 8.9. If
$$(f_n) \rightarrow f$$
 in measure, then there exists a subsequence (f_{n_k}) such that $(f_{n_k}) \rightarrow f$ almost everywhere.
P1: $\forall k \in \mathbb{N}$, $\mathbb{N}(||_{\mathcal{H}_{n}} - f| > \frac{1}{k}) \xrightarrow{n \rightarrow \infty} 0$
 $\forall k, \exists n_{k} \neq \eta_{k} > \eta_{k} = \eta_{k-1} \otimes \mathbb{N}(||_{\mathcal{H}_{n}} - f| > \frac{1}{k}) \leq \frac{1}{2^{k}}$
 $k_{d} \neq \eta_{k} = \{f_{n_{k}} - f_{l} > \frac{1}{k}\}.$
 $k_{d} \neq B = \{x \mid x \text{ why } \in f_{m}f_{g} \text{ many } A_{k} \}$
 $(\bigcirc \forall x \in B, ||_{\mathcal{H}_{k}} \otimes -f_{k})| \leq \frac{1}{k} \forall ||_{a_{2}} = k \Rightarrow (f_{u}(x)) \longrightarrow f_{k} \otimes \mathbb{P}$
 $(\supseteq NTS \mathbb{N}[B^{C}) = 0$

$$B^{c} = \{x \mid x \in \omega^{b} \text{ many } A_{k} \}$$

$$= \{x \mid \forall m \ni n \ge m + x \in A_{m} \}$$

$$= \bigwedge_{M=1}^{\infty} \bigcup_{M \ge m} A_{n}$$

$$\Longrightarrow \forall m, \bigwedge_{B} (B^{c}) \leq \bigwedge_{n \ge m} (\bigcup_{M \ge m} A_{m}) \leq \sum_{M \ge m} \bigwedge_{M \ge m} 2^{\frac{1}{2}n} = \frac{1}{2^{m}}$$

$$\bigwedge_{B} (B^{c}) \leq \frac{1}{2^{m}} \forall m \Rightarrow \bigwedge_{B} (B^{c}) = 0$$

$$CRED.$$

8.2. L^p spaces.

Definition 8.10. A Banach space is a normed vector space that is complete under the metric induced by the norm. Example 8.11. \mathbb{C} , \mathbb{R}^d , C(X), etc. are all Banach spaces. **Definition 8.12.** For $p \in (0, \infty)$, define $||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p}$. **Definition 8.13.** For $p = \infty$, define $||f||_{\infty} = \operatorname{ess\,sup}|f| = \inf\{C \ge 0 \mid |f| \le C \text{ almost surely}\}$ (the state of the state of the space) of the state of the space of the spa

$$X \rightarrow normed V.S. \qquad () ||x|| = 0 \quad () \quad x = 0 \quad dist:$$

$$|\cdot||: X \rightarrow [0, w) \rightarrow () ||x|| = ||x|| ||x||$$

$$\sum_{k=1}^{\infty} ||x+y|| \leq ||x|| + ||y| \qquad (x, d) \quad metric$$

$$f = 00; \qquad \|f\| = \sup_{x \in X} |f(x)|^{2} = \sup_{x \in X} |f| = \sup_{x$$

Definition 8.16. Define an equivalence relation on \mathcal{L}^p by $\underline{f} \sim \underline{g}$ if f = g almost everywhere. **Definition 8.17.** Define $\mathcal{L}\mathcal{R}(X) = \mathcal{L}^p(X) / \sim$.

Remark 8.18. We will always treat elements of $L^p(X)$ as functions, implicitly identifying a function with its equivalence class under the relation ~. In order to be logically correct, however, we need to ensure that every operation we perform on functions respects the equivalence relation ~.

Theorem 8.20 (Hölder's inequality). Say $p,q \in [1,\infty]$ with 1/p + 1/q = 1. If $f \in L^p$ and $g \in L^q$, then $fg \in L^1$ and $\left|\int_{X} fg \, d\mu\right| \leqslant \|f\|_{p} \|g\|_{q}.$ *Remark* 8.21. The relation between p and q can be motivated by dimension counting, or scaling. Holden conjugates. Mativation -> "Dimension contra". dem II f II. = lim $1, q : \mathbb{R}^q \longrightarrow \mathbb{R}$ (dimensionless) -> length. (dingeion). d'in a'