hast time o DCT $|\xi_n| \le F$ a.e. $\forall n$ (f ind of n)2 SF dp < 00 Thu lim Stade = If de.

7.3. Push forward measures

Definition 7.21. Say $f: X \to \mathbb{R}^d$ is integrable, then define $\int_X f d\mu = (\int_X f_1 d\mu, \dots, \int_X f_d d\mu$, where $f = (f_1, \dots, f_d)$.

Theorem 7.22. Let (X, Σ, μ) be a measure space, $f: X \to Y$ be arbitrary. Define $\tau = \{A \subseteq Y \mid f^{-1}(A) \in \Sigma\}$, and define $\nu(A) = \mu(f^{-1}(A))$. Then ν is a measure on (Y, τ) and $\int_{Y} \underline{g} \, d\nu = \int_{X} g \circ f(d\mu)$.

Remark 7.23. The measure ν is called the push forward of μ and denoted by $f^*(\mu)$, or $\mu_{f^{-1}}$. This is used often to define Laws of random variables. (We will use it to prove the change of variable formula.)

Prof. Gim $g:Y \rightarrow \mathbb{R}$. $\int g dv = \int g d d\mu$ Suy $S: Y \rightarrow \mathbb{R}$ is simply. $S = \sum a_i \mathbb{1}_{A_i}$ $\Rightarrow \int S dv = \sum a_i \mathcal{D}(A_i) = \sum a_i \mathcal{D}(f'(A))$ Also, $\int (s \circ f) d\mu = \int Z a_i \frac{1}{f'(A_i)} d\mu =$ $\Rightarrow 4s \sin \theta_{1}, \int s dv = \int (s \circ s) d\mu. \quad \exists g: Y \to R \text{ is } \Rightarrow 0$ $\forall x \quad \forall x \quad$ $=) \int g dv = \lim_{x \to \infty} \int S_n dv = \lim_{x \to \infty} \int (S_n \circ f) dv = \lim_{x \to \infty} \int (S_n \circ f) dv.$ $(S_n \circ f) dv = \lim_{x \to \infty} \int (S_n \circ f) dv.$ $(S_n \circ f) dv = \lim_{x \to \infty} \int (S_n \circ f) dv.$ $(S_n \circ f) dv.$ $(S_n \circ f) dv.$ $(S_n \circ f) dv.$

Corollary 7.24. If
$$\underline{\alpha} \in \mathbb{R}^d$$
, then $\int_{\mathbb{R}^d} \underline{f}(x+\alpha) d\lambda(x) = \int_{\mathbb{R}^d} f(x) d\lambda(x)$.

$$J \circ \mathbb{R}^{d} \longrightarrow \mathbb{R}^{d}$$

$$J(x) = \mathcal{I} + X$$

Then
$$g^{\star}(\lambda) = \lambda$$
.

By thm
$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \int$$

OED,

8. Convergence

- 8.1. Modes of convergence.
- **Definition 8.1.** We say $(f_n) \to f$ almost everywhere if for almost every $x \in X$, we have $(f_n(x)) \to f(x)$.

Definition 8.2. We say $(f_n) \to f$ in measure (notation $(f_n) \xrightarrow{\mu} f$) if for all $\underline{\varepsilon > 0}$, we have $(\mu\{|f_n - f| > \varepsilon\}) \to 0$.

Definition 8.3. Let $p \in [1, \infty)$. We say $(f_n) \to f$ in L^p if $(\int_X |f_n - f|^p d\mu) \to 0$.

Definition 8.3. Let
$$p \in [1, \infty)$$
. We say $(f_n) \to f$ in L^p if $(\int_X |f_n - f|^p d\mu) \to 0$.

- (1) $(f_n) \to f$ almost everywhere implies $(f_n) \to f$ in measure if $\mu(X) < \infty$.
- (2) $(f_n) \to f$ in measure implies $(f_n) \to f$ almost everywhere along a subsequence.
- (3) $(f_n) \to f$ in L^p implies $(f_n) \to f$ in measure (for $p < \infty$), and hence $(f_n) \to f$ along a subsequence.
- (4) Convergence almost everywhere or in measure don't imply convergence in L^p .

Eg:
$$(f_n) \rightarrow f$$
 a.e. but $(f_n) \rightarrow f$ in meas

Chan $f_n = 1$ $[n, \infty]$ $\{(f_n) \rightarrow 0 \text{ in meas}\}$
 $f = 0$ $(f_n) \rightarrow 0$ in meas

 $(f_n) \rightarrow 0$ $(f_n) \rightarrow 0$

Let
$$A = \bigcap_{k=1}^{\infty} A_k$$
. DNote $p(A) \leq \widehat{Z} \leq Z = \varepsilon$

2 Note: $f_n \rightarrow f_n$ mif on A .

(i $\forall n \geq n_k$) $|\{n-\}| \leq \frac{1}{k} \forall x \in A_k \geq A$)