7.2. **Dominated convergence.** When does
$$\lim \int_X f_n d\mu \neq \int_X f d\mu$$
? Two typical situations where it fails:

(1) Mass escapes to infinity
(2) Mass clusters at a point

(1) Mass clusters at a point

(2) Mass clusters at a point

(3) Mass clusters at a point

(4) Mass clusters at a point

(5) Mass clusters at a point

(6) Mass clusters at a point

(7) Mass clusters at a point

(8) Mass clusters at a point

(9) Mass clusters at a point

(1) Mass clusters at a point

(2) Mass clusters at a point

(3) Mass clusters at a point

(4) Mass clusters at a point

(5) Mass clusters at a point

(7) Mass clusters at a point

(8) Mass clusters at a point

(9) Mass clusters at a point

(1) Mass clusters at a point

(2) Mass clusters at a point

(3) Mass clusters at a point

(4) Mass clusters at a point

(5) Mass clusters at a point

(6) Mass clusters at a point

(7) Mass clusters at a point

(8) Mass clusters at a point

(9) Mass clusters at a point

(9) Mass clusters at a point

(1) Mass clusters at a point

(2) Mass clusters at a point

(3) Mass clusters at a point

(4) Mass clusters at a point

(5) Mass clusters at a point

(6) Mass clusters at a point

(7) Mass clusters at a point

(8) Mass clusters at a point

(9) Mass clusters at a point

(1) Mass clusters at a point

(1) Mass clusters at a point

(1) Mass clusters at a point

(2) Mass clusters at a point

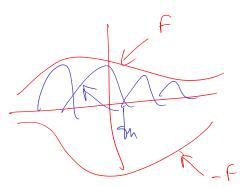
(3) Mass clusters at a point

(4) Mass clusters at a point

(5) Mass clusters at a point

(6) Mass clusters a

Theorem 7.15 (Dominated convergence). Say (f_n) is a sequence of measurable functions, such that $(f_n) \to f$ almost everywhere. Moreover, there exists $F \in L^1(X)$ such that $|f_n| \leqslant F$ almost everywhere. Then $\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu$.



Lemma 7.16 (Fatou). Suppose $f_n \ge 0$, and $(f_n) \to f$. Then $\liminf_{X} f_n d\mu \ge \int_X f d\mu$. (+ ve fors -> mess can escape, but not be created) For the second f_{n} into f_{n} \Rightarrow By M.C. $\lim_{n\to\infty}\int_{\infty}g_{n}h=\int_{\infty}(\lim_{n\to\infty}g_{n})d\mu=\int_{\infty}d\mu.$ But In & In > I som the & I to her 1. M-300 Jan -> QED.

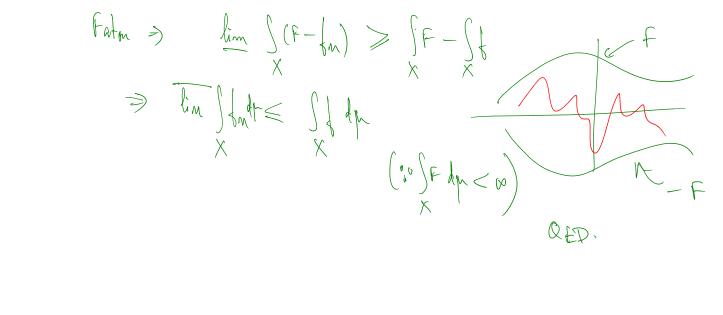
Proof of Theorem [7.15] D. C.
$$(f_{M}) \rightarrow f$$
, $|f_{M}| \leq F \in L^{1}(X)$
NTS $\lim_{X \to \infty} \int f_{M} d\mu = \int_{X} \int d\mu$.

Phi: D bet $g_{M} = F + f_{M} \gg D$

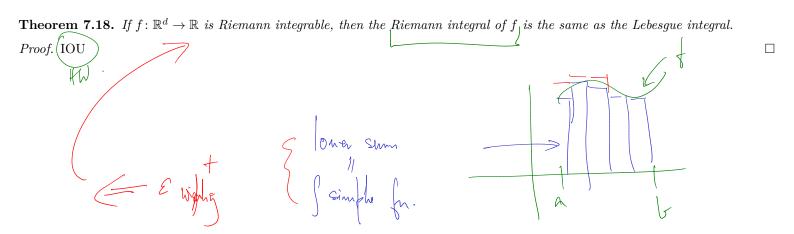
By Faton: $\lim_{X \to \infty} \int g_{M} d\mu \geq \int (F + f_{M}) d\mu$
 $\lim_{X \to \infty} \int (F + f_{M}) d\mu$

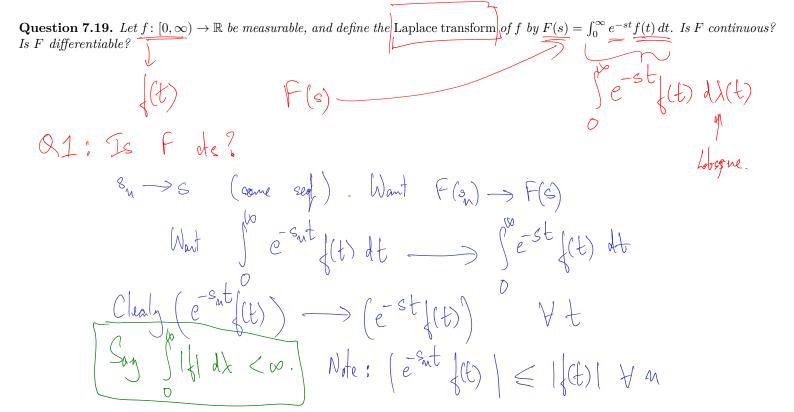
(1.) $\int_{X} f_{M} d\mu \geq \int_{X} f_{M} d\mu \geq \int_{X} f_{M} d\mu$

(2.) $\int_{X} f_{M} = F - \int_{X} f_{M} \geq D$



Theorem 7.17 (Beppo-Levi). If $f_n \ge 0$, then $\sum_{1}^{\infty} \int_{X} f_n d\mu = \int_{X} (\sum_{1}^{\infty} f_n) d\mu$.





D.C.
$$\Rightarrow$$
 $\lim_{s \to \infty} \int_{s}^{\infty} e^{-snt} f(t) dt = \int_{s}^{\infty} e^{-ct} f(t) dt$.

Pick $e > 0$, $f = -c$ $f = -c$

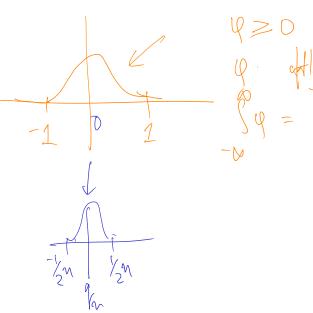
Note
$$(g_n(t)) = e^{-snt} - e^{-st}$$
 $f(t)$

Note $(g_n(t)) \longrightarrow -te^{-st}$ $f(t)$

Q: Poes $f(t)$ $dt \longrightarrow -f(t)$ $f(t)$ $f(t)$

Note $|g_n(t)| \le |g_n(t)| \le |g_n(t)| \le |g_n(t)|$
 $|g_n(t)| \le |g_n(t)| \le |g_n(t)| \le |g_n(t)|$
 $|g_n(t)| \le |g_n(t)| \le |g_n(t)|$
 $|g_n(t)| \le |g_n(t)| \le |g_n(t)|$
 $|g_n(t)| \le |g_n(t)|$
 $|g_n(t)|$

Question 7.20. Let φ be a bump function, and (q_n) be an enumeration of the rationals. Define $f(x) = \sum_{n=1}^{\infty} \underbrace{\varphi(2^n(x-q_n))}$. Is f finite almost everywhere?



$$Q \ge 0$$
 $Q = 4$
 $Q = 4$