7. Integration

$$
\left(s=\sum_{i}^{n} a_{i}{I_{A}}^{A_{i}}\right.
$$

7.1. Construction of the Lebesgue integral. Recall, $s: X \rightarrow \mathbb{R}$ is simple if s is measurable and has finite range.

Definition 7.1. Let $s \geqslant 0$ be a simple function. Let $\left\{\underline{\underline{a_{1}}}, \ldots, a_{n}\right\}=s(X)$, and set $\underline{\underline{A_{i}}}=s^{-1}\left(a_{i}\right)$. Define $\underline{\underline{\int_{X}} s d \mu}=\sum_{i=1}^{n} \underline{\underline{a_{i}}} \underline{A} \mu_{\mu} \cdot \mu\left(A_{i}\right)$
Remark 7.2. Always use the convention $0 \cdot \infty=0$.
Remark 7.3. Other notation: $\int_{X} s d \mu=\int_{X} s(x) d \mu(x)$.

$$
\begin{aligned}
& \int_{x} s d \mu=\sum_{i}^{n} a_{i} \mu_{i}\left(A_{i}\right) \\
& \begin{array}{l}
\int s=\int_{x}^{x} s d \\
\text { For MT only- }
\end{array} \\
& \text { Nolatim: } A \subseteq X(A \in \Sigma)^{\text {an }} \quad A_{2} A_{3} \\
& \int_{A}^{s} d \mu=\int_{X} 1 A_{A}^{s} d \mu=\sum_{i=1}^{n} a_{i} \underline{M\left(A \cap A_{i}\right)}
\end{aligned}
$$

Proposition 7.4. If $0 \leqslant s \leqslant t$ are simple, then $\int_{X} s d \mu \leqslant \int_{X} t d \mu$. (matomanty of μ)
Proposition 7.5. If $s, t \geqslant 0$ are simple, then $\int_{X}(s+t) d \mu=\int_{X} s d \mu+\int_{X} t d \mu$.

$$
(\text { (Same checking imveined, st vaight fousind) }
$$

Definition 7.7. Let $f: X \rightarrow[-\infty, \infty]$ be measurable. We say f is integrable if $\int_{X} f^{+} d \mu<\infty$ and $\int_{X} f^{-} d \mu<\infty$. In this case we define $\int_{X} f d \mu=\int_{X} \underline{f^{+} d \mu-\int} \underline{X} \overline{f-d \mu}$. (lose cancellation!)
Definition 7.8. We let $\left.\underline{L^{1}(X)=L^{1}(X}, \Sigma, \mu\right)$ be the set of all integrable functions on X. (Note $f \in L^{1} \Longleftrightarrow|f| \in L^{1}$.) \}
Definition 7.9. We say f is integrable in the extended sense if either $\int_{X} f^{+} d \mu<\infty$ or $\int_{X} f^{-} d \mu<\infty$. In this case we still define $\int_{X} f d \mu=\int_{X} f^{+} d \mu-\int_{X} f^{-} d \mu$.
Remark 7.10. If both $\int_{X} f^{+} d \mu=\infty$ and $\int_{X} f^{-} d \mu=\infty$, then $\int_{X} f d \mu$ is not defined.
Question 7.11. Do we have linearity?

$$
\begin{aligned}
& f^{\prime}=f V 0=\max \{f, 0\} \\
& f^{\prime}=-f 10=-\sin \{b 0\}
\end{aligned}
$$

Chuk limuty: $\quad f, g \geqslant 0$.

$$
\begin{aligned}
& 0 \leq s \leq f, 0 \leq t \leq g, \quad s, t \text { simphe } \\
& \Rightarrow 0 \leq s+t \leq f+g \\
& \Rightarrow \int_{x}(f+g) \mu s \\
& \sup \left\{\int_{x}(s+t) d \mu \quad \left\lvert\, \begin{array}{l}
0 \leq s s f \\
0 \leq t \leq g
\end{array}\right., s, t \operatorname{sinph}\right\} \\
& \int_{x} f d \mu+\int g d \mu .
\end{aligned}
$$

Renk. If $\mu(x)<\infty \& f 0 g b t d$ can ahow $\int_{x}^{x}(f+g) d \mu \leq \int_{x} f d \mu+\int_{x} g d p$

$(1) t \leq s \Rightarrow \int_{x} t d \mu \leq \int_{x} s d \mu \Rightarrow s d \mu \geqslant \sin \int_{0 \leq t \leq s} t d x$
(2) Chacer $s=t \quad$ simphu
(2) Chacer $c=t$ \& get equatty.

Theorem 7.13 (Monotone convergence). Say $\left(\underline{f_{n}}\right) \rightarrow \underline{f}$ almost everywhere, $0 \leqslant f_{n} \leqslant f_{n+1}$, then $\left(\int_{X} f_{n} d \mu\right) \rightarrow \int_{X} f d \mu$.
If: $10 \lim _{n \rightarrow \infty} \int_{x} f_{n} d x$ exists $\left(y_{e s} \quad \int f_{n} \leq \int f_{n+1}\right)$
(could he ∞)
(2) $\int_{x} f_{\mu} \phi \mu \leqslant \int_{x} f_{x} f_{\mu} \Rightarrow \lim _{x} \int_{x} f_{n} d \mu \leq \int_{x} f d \mu$.
(3) NTS bim $\int_{x} f_{n} A p \geqslant \int f d \mu$.

Pf: Let s simple, $0 \leq s \leq f$. enoch to show him form $\geqslant \int s$
Let $E_{n}=\left\{f_{n} \geqslant S(1-\varepsilon)\right\}$ Note $E_{n} \subseteq E_{n+1}$

$$
\begin{aligned}
& \text { Sang } U E_{n}=X \text {, H(Lophsis) } \\
& \text { Clach } \int_{x} f_{n} d \mu \geqslant \int_{E_{n}} f_{n} d \mu \geqslant E_{E_{n}}^{(r)} s d \mu \text {. } \\
& =\left(l_{i-1}^{m} \sum_{i=1}^{E_{n}} a_{i} \mu\left(A_{i} \cap E_{n}\right) \quad\left(s=\sum_{i=1}^{m} a_{i} 1_{A_{i}}\right)\right. \\
& \xrightarrow{u \rightarrow \infty} s_{i}+\sum_{i=1}^{m} a_{i} \mu\left(A_{i}\right)=(1-i) \int_{x} s d \mu . \\
& \Rightarrow \lim _{u \rightarrow \infty} \int_{x} b_{m} d_{\mu} \geqslant(1-i) \int_{x} s d \mu \quad \forall s \operatorname{simph}, \alpha \leq \leq f \rightarrow \text { QED. }
\end{aligned}
$$

Theorem 7.14. If f, g are integrable, then $\int_{X}(f+g) d \mu=\int_{X} f d \mu+\int_{X} g d \mu$.
Pf: (1) Soy $f, g \geqslant 0$. $K_{\text {mav }} \exists s_{n}$, t_{n} simpte t

$$
\begin{aligned}
& \left(s_{n}\right) \rightarrow f, \quad\left(t_{n}\right) \rightarrow g, 0 \leq s_{n} \leq s_{n+1}, 0 \leq t_{n} \leq t_{n+1}
\end{aligned}
$$

(2)hema: Suy $f=g-h$ ahere gch $\geqslant 0 \quad\left(f, j, h \in L^{\prime}\right)^{\prime}$ then $\int_{x} f d u=\int_{x} g d r-\int_{x} h d r$.

Pf:

$$
\begin{aligned}
& f=f^{+}-f^{-}=g-h \Rightarrow f^{t}+h=f^{-}+g \quad(d l \geq 0) \\
& B_{y}(1) \Rightarrow \int_{x}^{+}+\int_{x}^{+} h=\int_{x} f+\int_{x} g \\
& \Rightarrow \int_{x}^{f}-\int_{x} f^{-}=\int_{x} h-\int_{x} g Q E D-
\end{aligned}
$$

(3) NTS $f, j \in L$, NTS $\int(f \not f g)=\int f+\int \rho$.

$$
\text { Pf: } f+g=\left(f^{+}-f\right)+g^{+}-9=(\underbrace{\left(f^{+}+g^{+}\right)}_{\geqslant 0}-\underbrace{\left(f^{-}+g^{-}\right)}_{\geqslant 0}
$$

$$
\begin{aligned}
& B y(2) \Rightarrow \int_{x}(f+j) d r=\int_{x}\left(f^{t}+g^{t}\right) d r-\int_{x}\left(f^{-}+g\right) d \mu \\
& \stackrel{\text { bgI }}{=} \int_{x} f^{t}+\int_{x} g^{+}-\int_{x} f^{-}-\int_{x} g \\
&=\left(\int_{x} f d \mu\right)+\left(\int_{x} g d \mu\right)_{Q E D .}
\end{aligned}
$$

