Definition 6.25. A function $s: X \rightarrow \mathbb{R}$ is called simple if s is measurable, and has finite range (ie. $s\left(\mathcal{S}^{2}\right)=\left\{a_{1}, \ldots a_{n}\right\}$).
Question 6.26. Why bother with simple functions?

$$
\begin{aligned}
& \text { Eg: } A \in \sum \quad s=\mathbb{1}_{A} \quad\left(1_{A}(a)=\left\{\begin{array}{ll}
1 & x \in A \\
0 & x \notin A
\end{array}\right)\right. \\
& \left(A \in \Sigma \Rightarrow S \text { mons } \left(\because ;\{s<\alpha\}= \begin{cases}x & \alpha>1 \\
A & \alpha \in(0,1)=\in \Sigma \\
\phi & \alpha \leq 0\end{cases} \right.\right. \\
& A_{1}, \cdots A_{n} \in \sum_{n} a_{1}, \cdots a_{n} \in \mathbb{R} \text {, } \\
& s=\sum_{i}^{n} \hat{a}_{i} \mathbb{1}_{\underline{A_{i}}} \\
& \text { Q: } \int_{x} s d \mu \stackrel{d e}{=} \sum a_{i} \mu\left(A_{i}\right)= \\
& \text { If mat simple diving } \int f \text { by utpax } \\
& \text { ob by simple pres- }
\end{aligned}
$$

Theorem 6.27. If $f \geqslant 0$ is a measurable function, then there exists a sequence of simple functions $\left(s_{n}\right)$ which increases to f. Corollary 6.28. $\overline{f f f: X} \rightarrow \mathbb{R}$ is measurable, then there exists a sequence of simple functions $\left(s_{n}\right)$ such that $\left(s_{n}\right) \rightarrow f$ pointwise, and $\left|s_{n}\right| \leqslant|f|$. (Dominated).

$$
\begin{aligned}
& \rightarrow P f_{i} \\
& \delta^{-1}\left(\left[\frac{k}{n}, \frac{k+1}{n}\right)\right)=A_{k, n} \in \sum . \\
& \operatorname{loy} s_{n}=\sum_{k=0}^{n^{2}} \frac{k}{n} \|_{k, x} \quad\left(\left(s_{n}\right) \rightarrow f\right. \text { font ned meir he imp) } \\
& f\left(\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)=A_{k, n}, \& \text { let } s_{n}=\sum_{k=0}^{2 n} \frac{k}{2^{n}} H_{A_{k}, h .}\right. \\
& s_{m} \text { simple }, s_{n+1}-s_{m} \geqslant 0 \\
& \&\left|s_{n}(x)-f(x)\right| \leq \frac{1}{2^{n}} \Rightarrow\left(s_{n}\right) \rightarrow f^{\&}\left(s_{m} \text { ide }_{Q \in D}\right.
\end{aligned}
$$

If of hor: $f^{+}=\max \{f, 0\}=f \vee O \quad$ (meas)

$$
\begin{aligned}
& \quad f^{-}=-\min \{f, 0\}=-(f \wedge 0)(\text { mes }) \\
& f=f^{+}-f^{-} . \\
& B_{y} \text { the } \exists\left(s_{m}\right) \text { simple }+\left(s_{n}\right) \rightarrow f^{\prime} \\
& \& \exists\left(t_{m}\right) \text { simple }+\left(t_{n}\right) \rightarrow f^{-} \\
& \text {hm }\left(s_{n}-t_{n}\right) \rightarrow f, s_{n}-t_{n} \text { is simp } \\
& k\left|s_{n}-t_{n}\right| \leqslant|f| \text { QED. }
\end{aligned}
$$

Q: of meas $\nRightarrow f d s$
Q:? Jf mens t of is wat ds anyatmere?

$$
\text { Yes: } f=1_{Q} \text {. }
$$

Theorem 6.29 (Lusin). Let μ be a finite regular measure on a metric space X. Let $f: X \rightarrow \mathbb{R}$ be measurable. For any $\varepsilon>0$ there exists a continuous function $\bar{g}: X \rightarrow \mathbb{R}$ such that $\mu\{f \neq g\}<\varepsilon$.

$$
\begin{aligned}
& \text { Cor: } \begin{array}{c}
(D \operatorname{lnv}) \\
\vdots
\end{array} \exists g: X \rightarrow \mathbb{R}+\quad f=\hat{g} \text { ale. \& } f \text { is cts } \\
& \text { (False: Cor: Cis as ale. (FAlSE) }
\end{aligned}
$$

\exists were $\mathrm{rns}_{1} \rightarrow \nRightarrow a$ ats $f^{x} g$

for winch $f={\underset{y}{t}} a \cdot l$. f

Lemma 6.30 (Tietze's extension theorem). If $C \subseteq \underline{\underline{X}}$ is kentinuorws, and $f: \underline{\underline{C} \rightarrow \mathbb{R}}$ is continuous, then there exist $\bar{f}: X \rightarrow \mathbb{R}$ such that $\bar{f}=f$ on $C . \overline{\text { AND }} f$ is cts
Rem: If X is a most top space the the pf is hand.

$$
P_{0} f_{0}(x)=\left\{\begin{array}{l}
\inf \left\{c \in C \left\lvert\, f(c)+\frac{d(x, c)}{d(x, C)}-1\right.\right\} \\
f(x) \\
x \in C
\end{array}\right.
$$

$\varepsilon-\delta$ check f is cts

Lemma 6.31. Let $f: X \rightarrow \mathbb{R}$ be measurable. For every $\varepsilon>0$, there exists $\underline{\underline{C} \subseteq X \text { closed such that } \mu(X-C)}<\varepsilon$ and $f: C \rightarrow \mathbb{R}$ is
Pf: Foe I: $f: x \rightarrow[0,1$
(f is bold)
$\left.\operatorname{dog} \rightarrow A_{n, k}=f^{-1}\left(1 \frac{k}{2^{n}}, \frac{k+1}{2^{x}}\right)\right)$

$$
\begin{aligned}
& \in \sum \Rightarrow \exists k_{m, k} \text { qt } 2 K_{u, k} S A_{n, k} \\
& =\mu\left(A_{n, k}-k_{n, k}\right)<\frac{\varepsilon}{\sum 4^{n}}
\end{aligned}
$$

Lot $C_{n}=\bigcup_{k} K_{n, k}$. Note $\mu\left(C_{n}^{c}\right) \leqslant 2^{n} \cdot \frac{\varepsilon}{x_{1}^{n}}=\frac{\varepsilon}{2^{n}}$
Lat $C=\bigcap_{1}^{\infty} C_{n}$. Node $C_{\text {is and } k} \mu\left(C^{c}\right) \leq \sum_{\frac{\varepsilon}{2^{n}}}^{x^{n}}=\varepsilon$ m

Cham: f is dos an C.

$$
\text { Pf: } u t \quad s_{n}=\sum_{k=0}^{i^{n}} \frac{k}{a} I_{k_{n, k}}
$$

Note s_{n} is the an $\bigcup_{k} k_{n, k}=C_{n} \Rightarrow s_{n}$ dos on C

$$
\left(k_{n, k} \text { ane disc as } k \text { whine e }\right) \text {. }
$$

Node $\left|s_{n+1}-s_{n}\right| \leqslant \frac{1}{2^{n+1}}$ on $C \Rightarrow\left(s_{n}\right) \rightarrow$ f inf an C
Cur II: f wat Cad
set $a=\tan ^{-1}(b)$
QED.

Proof of Lusin's theorem. Previous two lemmas. $\rightarrow \exists C$ thee $\partial \quad f: C \rightarrow R$ is es
Proof of Lemma 6.31.

$$
\& \mu(X-c)<\varepsilon
$$

Dee Trieste to extend f.

