Definition 6.13 (Cantor function). Let C be the Cantor set, and $\alpha = \log 2/\log 3$ be the Hausdorff dimension of C. Let $f(x) = H_{\alpha}(C \cap [0, x]) / H_{\alpha}(C).$ (1) f(0) = 0, f(1) = 1 and f is increasing. (In fact, f is differentiable exactly on C, and f' = 0 wherever defined.) $\gamma(2)$ f is continuous everywhere. (In fact f is Hölder continuous with exponent $\alpha = \log 2/\log 3$.) (3) Let $g = f^{-1}$. That is, $g(x) = \inf\{y \mid f(y) = x\}$ (Note, since f is continuous f(g(x)) = x)). **Proposition 6.14.** The function $g: [0,1] \rightarrow \underline{C}$ is a strictly injective Borel measurable function. La Pf f is obs: $f(x) - f(x - y_n)$ $= H_{x}((x-\frac{1}{n}, x) \cap C)$ $H_{\alpha}(C)$ M-> A Ha (Eng (C) H(C)

$$g = \int f' : g(x) = \inf\{g \mid \{g\} \mid g(y) = x\} \xrightarrow{n_1} f(y) = x\}$$

$$(g: \{g\} \mid g(y) = x\} \neq \phi ? (xe[g_1]) \xrightarrow{n_1} f(y) = y$$

$$f : Xee \implies int vel Hum)$$

$$f : Xee \implies int vel Hum)$$

$$f : Xee \implies int 2g \mid f(y) = x\} \implies min_1 \{g \mid f(y) = x\}$$

$$\implies f(g(x)) = n$$

$$\lim_{n \to \infty} f$$

Theorem 6.15. $\mathcal{L}(\mathbb{R}) \supseteq \mathcal{B}(\mathbb{R})$.

 P_{f}° , let $A \subseteq [0, 1]$ be non meas will $\Im_{i}^{\circ}g(A) \longrightarrow meas^{?}$ les: $g(A) \subseteq C \implies g(A) \in \mathcal{L}(\mathbb{R})$ \mathbb{Q}^{2} : Is $\mathfrak{q}(A) \in \mathfrak{B}(\mathbb{R})^{2}$. NO! If $g(A) \in \mathcal{B} \implies \overline{g}^{1}(g(A)) \in \mathcal{B}(\mathbb{R})$ (big is meas) But $A \notin \mathcal{L}(\mathbb{R})$ by const. Contradition QED.

Theorem 6.16. There exists $h_1, h_2 \colon \mathbb{R} \to \mathbb{R}$ such that h_1 is $\mathcal{L}(\mathbb{R})$ -measurable, h_2 is $\mathcal{B}(\mathbb{R})$ measurable, but $h_1 \circ h_2$ is not $\mathcal{L}(\mathbb{R})$ measurable. $E \subseteq X$, $1 (a) = \begin{cases} n \in E \\ n \in E \end{cases}$ *Remark* 6.17. Note $(h_2) \circ h_1$ has to be $\mathcal{B}(\mathbb{R})$ -measurable. $A \subseteq (0,1]$, $A \notin L(\mathbb{R})$ $g(A) \in \mathcal{L}(\mathbb{R})$ (h, is L-meas) het 1 B meas ! (h, is not K Noter $\int_{0}^{1} m A = 1$ h, o h 0 9 ~ 7

-a.e. **Definition 6.18.** Let (X, Σ, μ) be a measure space. We say a property P holds almost everywhere if there exists a null set N such that P holds on N^c . \rightarrow Example 6.19. If $\underline{f}, \underline{g}$ are two functions, we say $\underline{f} = \underline{g}$ almost everywhere if $\{f \neq g\}$ is a null set. Example 6.20. Almost every real number is irrational. Example 6.21 If $A \in \mathcal{L}(\mathbb{R})$, then $\lim_{h \to 0} \frac{\lambda(\underline{A} \cap (x, x + h))}{\underline{h}} = \underline{\mathbf{1}}_{A}(x)$ for almost every x. (Contrast with HW3, Q3b) Example 6.22. Let $x \in (0,1)$, and p_n/q_n be the n^{th} convergent in the continued fraction expansion of x. Then $\lim_{n \to \infty} \frac{\log q_n}{n} = \frac{\pi^2}{12 \log 2}$. A = [0, 1].- lim $() \neq E \subseteq R mens \neq \forall (a,b), \lambda(E \cap (a,b)) \in (15),$

 $x \in [0, 1] \longrightarrow cont protion for x$ N · fu(x) = which cour of the Imente M tems $= X + X \int E \times pot q_m(x) \longrightarrow 0.$ lim n >jo $t_{h}(x)$ Q: How fast? 2 (X) $l_{n} q_{n}(x) =$ lim h 12 luz N ampt every!

Assume hereafter (X, Σ, μ) is complete

Proposition 6.23. If f = g almost everywhere and f is measurable, then so is g. P_{1} ; NTS g more. Let $N = \frac{1}{2} \neq \frac{1}{2}$ (and) Fick I C R dan $\vec{j}'(u) = (\vec{j}'(u) \cap N^{c}) \cup (\vec{j}'(u) \cap N) \\
 = (\vec{j}'(u) \cap N^{c}) \cup (\vec{j}'(u) \cap N) \rightarrow QD$ **Proposition 6.24.** If $(f_n) \to f$ almost everywhere, and each f_n is measurable, then so is f.

M

$$\begin{aligned}
\mathcal{F}_{i} : \mathcal{N} = \left\{ \begin{array}{c} 1 \\ n \rightarrow \infty \end{array} \right\} \quad \text{freed} = \left\{ \begin{array}{c} 1 \\ n \rightarrow \infty \end{array} \right\} \quad \text{freed} = \left\{ \begin{array}{c} 1 \\ n \rightarrow \infty \end{array} \right\} \quad \text{freed} \quad \text$$

China HN 3H Claim
$$\not\exists E \subseteq \mathbb{R} + \forall intends I, \lambda(EOI) \in [k, -k]$$

 $(R > 0)$
 $\Lambda = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A) \leq \lambda(A \cap E) \leq (I - K) \setminus (A) \}$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A \cap E) \mid A)$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A \cap E) \mid A)$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A \cap E) \mid A)$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A \cap E) \mid A)$
 $(P = \{A \in \mathscr{B} \mid A)$
 $(P = \{A \in \mathscr{B} \mid R \setminus (A \cap E) \mid A)$
 $(P = \{A \in \mathscr{B} \mid R \mid A)$
 $(P = \{A \in \mathscr{B} \mid$