Definition 6.13 (Cantor function). Let C be the Cantor set, and $\alpha=\log 2 / \log 3$ be the Hausdorff dimension of C. Let $f(x)=H_{\propto}(C \cap[0, x]) / H_{\alpha}(C)$.
(1) $f(0)=0, f(1)=1$ and f is increasing. (In fact, f is differentiable exactly on C^{c}, and $f^{\prime}=0$ wherever defined.)
$y(2) \sqrt{f}$ is continuous everywhere. (In fact f is Hölder continuous with exponent $\alpha=\log 2 / \log 3$.)
(3) Let $g=f^{-1}$. That is, $g(x)=\inf \{y \mid f(y)=x\}$ (Note, since f is continuous $\left.f(g(x))=x\right)$).

Proposition 6.14. The function $g: \overline{[0,1] \rightarrow \underline{\underline{C}} \text { is a strictly infective Botel measurable function. }}$

$$
\begin{gathered}
g=I^{-1}: \quad g(x)=\inf \{y \mid f(y)=x\} \\
\left(Q:\{y \mid f(g)=x\} \neq \phi ?(x \in[0,1])^{x}\right. \\
A: \text { Yes } \rightarrow \text { int int Hun })
\end{gathered}
$$

f cts $\Rightarrow \inf \{y \mid f(y)=x\}=\min \{y \mid f(y)=x\}$

$$
\Rightarrow f(g(x))=x
$$

C Chimps g is strictly ines.
Claim 2: g is Bon mass $(\because\{g<\alpha\}$ is an interval $\forall \alpha)$
$(\operatorname{laim} 3: \operatorname{Ragg}(g) \subseteq C$

Theorem 6.15. $\mathcal{L}(\mathbb{R}) \supsetneq \mathcal{B}(\mathbb{R})$.
Pf: hot $A \subseteq[0,1]$ he men meas aull

$$
\begin{aligned}
& \text { Q: } g(A) \rightarrow \text { meas? Yes: } g(A) \subseteq C^{\swarrow} \Rightarrow g(A) \in \mathcal{L}(\mathbb{R}) \\
& \text { Q2: Is } g(A) \in B(\mathbb{R}) \text { ? } \\
& \text { No! If } g(A) \in B \Rightarrow \underbrace{g^{-1}(g(A))}_{A} \in B(\mathbb{R})\left(\%: g_{\text {im in }}\right) \\
& \text { Buit } A \notin \mathcal{L}(\mathbb{R}) \text { by cwrot. Coutauditon }
\end{aligned}
$$ QED.

Theorem 6.16. There exists $h_{1}, h_{2}: \mathbb{R} \rightarrow \mathbb{R}$ such that h_{1} is $\mathcal{L}(\mathbb{R})$-measurable, h_{2} is $\mathcal{B}(\mathbb{R})$ measurable, but $h_{1} \circ \frac{h_{2}}{=}$ is not $\mathcal{L}(\mathbb{R})$ measurable.
Remark 6.17. Note $\left.h_{2}\right) h_{1}$ has to be $\mathcal{Z}(\mathbb{R})$-measurable.
Pf:

$$
\begin{aligned}
& A \subseteq(0,1], A \notin \mathcal{L}(\mathbb{R}) \\
& g(A) \in \mathcal{L}(\mathbb{R})
\end{aligned}
$$

$$
\left\{\begin{array}{ll}
E \subseteq X \\
\frac{1}{E}(x)
\end{array}= \begin{cases}1 & x \in E \\
0 & x \notin E\end{cases}\right.
$$

$$
\begin{aligned}
& g(A) \in \mathcal{L}(\mathbb{R}) \\
& \text { Let } h_{1}=\frac{1}{A^{(A)}} \quad\left(h_{1} \text { is } \mathcal{L} \text {-meas }\right) \\
& \text { Let } h_{2}=g^{g(A)} \quad\left(h_{2} \text { is } 83 \text { mrs }\right) \\
& \text { ole } h_{1} \circ h_{2}={\underset{g}{(A)}}^{0} \mathrm{~g}=\left\{\begin{array}{ll}
1 & \text { on } A \\
0 & \text { on } H^{c}=\frac{1 L^{\prime}}{A} \quad \text { mat }(\mathbb{R}) \text { meas }
\end{array}\right. \text { aRD. }
\end{aligned}
$$

Definition 6.18. Let (X, Σ, μ) be a measure space. We say a property P holds almost everywhere if there exists a null set N such that \underline{P} holds on N^{c}.
\rightarrow Example 6.19. If f, g are two functions, we say $\underline{\underline{f=g} \text { almost everywhere if }\{f \neq g\}}$ is a null set.
Example 6.20. Almost every real number is irrational.

Example 6.22. Let $x \in(0,1)$, and $\overline{p_{n}} / q_{n}$ be the $n^{\text {th }}$ convergent in the continued fraction expansion of x. Then $\lim _{n \rightarrow \infty} \frac{\log q_{n}}{n}=\frac{\pi^{2}}{12 \log 2}$.

$$
A=[0,1]
$$

v
$x \in[0,1] \rightarrow$ cont pratian for x

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+1}}
$$

Tmate to n tems $\frac{\phi_{n}(x)}{q_{n}(x)}=x^{\text {th }}$ ians of the

Assume hereafter (X, Σ, μ) is complete.
Proposition 6.23. If $\underset{\sim}{f}=\underline{\underline{g}}$ almost everywhere and f is measurable, then so is g.
Pf: NTS a mane. Lot $N=\{f \neq g\} \quad$ (will)
Pike $U \subseteq \mathbb{R}$ dan.

$$
\begin{aligned}
g^{-1}(u) & =\left(g^{-1}(u) \cap n^{c}\right) \cup\left(g^{-1}(u) \cap N\right) \\
& =\left(f^{-1}(u) \cap N^{c}\right) \cup\left(g^{-1}(u) \cap N\right) \quad \sum_{n}^{\pi}
\end{aligned}
$$

Proposition 6.24. If $\left(f_{n}\right) \rightarrow f$ almost everywhere, and each f_{n} is measurable, then so is f.

$$
\text { Pf: } \quad N^{c}=\left\{x \mid \lim _{n \rightarrow \infty} f_{n}(x)=f(x)\right\} \quad N \text { is mull. }(\Rightarrow \text { mems }) \text {. }
$$

$$
1_{n^{c}} \delta=\lim _{n \rightarrow \infty} \underbrace{n^{c} \delta_{n}}(\forall x)
$$

$$
\frac{1}{N} c f=f a \cdot l . \Rightarrow f \text { mess } \theta E D
$$

Ctrimen HW3f $C_{(k>0)} \neq \neq \subseteq \in \mathbb{R}+\forall$ imtemis $I, \quad \frac{\lambda(E \cap I)}{\lambda(I)} \in[k, 1-k]$,

$$
\Lambda=\left\{A \in B \mid \quad k \lambda(A) \leqslant \lambda\left(A \wedge_{E}\right) \leqslant(1-K) \lambda(A)\right\}_{K=, 2}
$$

(1) $: 1,1 \in \Lambda$
(2) $A \subseteq B, A, B \in \Lambda$, NTS $B-A E \wedge$ $\lambda($

