Corollary 5.16. Let $\mathcal{N} = \{A \subseteq \mathbb{R}^d \mid \lambda^*(A) = 0\}$. Then $A \in \mathcal{L}(\mathbb{R}^d)$ if and only if $A = B \cup N$ for some $B \in \mathcal{B}(\mathbb{R}^d)$ and $N \in \mathcal{N}$. **Definition 5.17.** Let (X, Σ, μ) be a measure space. We define the completion of Σ with respect to the measure μ by $\Sigma_{\underline{\mu}} \stackrel{\text{def}}{=} \{ A \subseteq X \mid \exists F, G \in \Sigma \text{ such that } F \subseteq A \subseteq G \text{ and } \mu(G - F) = 0 \}$ For every $A \in \Sigma_{\mu}$, find F, G as above and define $\overline{\mu}(A) = \mu(F)$. **Definition 5.18.** Let $\mathcal{N} = \{\underline{A} \subseteq X \mid \exists \underline{E} \in \Sigma, \ E \supseteq A, \ \mu(E) = 0\}$. We say (X, Σ, μ) is complete if $\mathcal{N} \subseteq \Sigma$. **Theorem 5.19.** Σ_{μ} is a σ -algebra, $\bar{\mu}$ is a measure on Σ_{μ} , and $(X, \Sigma_{\mu}, \bar{\mu})$ is complete. hast fine The -> well def. O Zp is a J-dg. Pf: OXEZp. $\bigcirc I_{f} A \in Z_{h} \Rightarrow A \in Z_{h} (P_{f}: Find F \subseteq A \subseteq G \Rightarrow G \subseteq A^{c} \subseteq F^{c})$ $\begin{array}{c} \textcircled{C} \\ A_i \\ \in \\ \overbrace{} \\ I \\ \end{array} \\ Nis \\ \H{V} \\ A_i \\ \in \\ \overbrace{} \\ A_i \\ \in \\ \overbrace{} \\ P_i \\ H_i \\$ a mease: $A_i \in \mathbb{Z}_p$, disj. find $F_i, G_i \neq F_i \subseteq A_i \subseteq G_i \land M(G_i - F_i) = 0$ F_i disj $VF_i \subseteq VA_i \subseteq VG_i \land \mu(VG_i - VF_i) = D = \tilde{\mu}(VA_i) = \mu(VF_i) = \tilde{\lambda}(A_i)_{GED}$

Theorem 5.20.
$$\Sigma_{\mu}$$
 is the smallest μ -complete σ -algebra containing Σ .
Corollary 5.21. $\Sigma_{\mu} = \sigma(\Sigma \cup N)$.
Corollary 5.22. $\mathcal{L}(\mathbb{R}^{d}) = \overline{\sigma}(\mathcal{B}(\mathbb{R}^{d}) \cup N)$.
 $\Rightarrow P_{1} = \int_{\mathcal{L}} \mathcal{L}(\mathbb{R}^{d}) = \overline{\sigma}(\mathcal{B}(\mathbb{R}^{d}) \cup N)$.
 $\Rightarrow P_{1} = \int_{\mathcal{L}} \mathcal{L}(\mathbb{R}^{d}) = \overline{\sigma}(\mathcal{B}(\mathbb{R}^{d}) \cup N)$.
 $\Rightarrow -\operatorname{complete} \Rightarrow \tau \supseteq Z_{\mu}$.
 $P_{1} = \int_{\mathcal{L}} \mathcal{L}(\mathbb{R}^{d}) = \mathcal{L}(\mathbb{R}^{d}) = \mathcal{L}(\mathbb{R}^{d}) = \mathcal{L}(\mathbb{R}^{d})$.
 $P_{1} = \int_{\mathcal{L}} \mathcal{L}(\mathbb{R}^{d}) = \mathcal{L}(\mathbb{R}^{d}) = \mathcal{L}(\mathbb{R}^{d}) = \mathcal{L}(\mathbb{R}^{d})$.
 $P_{1} = \int_{\mathcal{L}} \mathcal{L}(\mathbb{R}^{d}) = \mathcal{L}(\mathbb{R}^{d}) =$

Remark 5.23. There could exist μ -null sets that are not in Σ .

Sny
$$\lambda \rightarrow helegu meno on [0,1].$$

 $\neg Z = \{ \phi, [0,1] \}.$
Q: Null ate of $(Z, \lambda) : W = \{ \phi \}, \{ g \}.$

6. Measurable Functions

Definition 6.1. Let (X, Σ, μ) be a measurable space, and (Y, τ) a topological space. We say $f: X \to Y$ is measurable if $f^{-1}(\tau) \subseteq \Sigma$. Remark 6.2. Y is typically $[-\infty, \infty], \mathbb{R}^d$, or some linear space.

Meas

Remark 6.3. Any continuous function is Borel measurable, but not conversely.

Question 6.4. Say $f: X \to Y$ is measurable. For every $B \in \mathcal{B}(Y)$, must $f^{-1}(B) \in \Sigma$?

$$\forall U \subseteq Y \text{ den}, f'(U) \in \mathbb{Z}$$

 $Q: \forall B \subseteq Y \text{ Bond}, \text{ is } f'(B) \in \mathbb{Z}^{?},$
 $Q: Y = R \cdot f: X \rightarrow Y \text{ is meas}.$
 $Q: \forall B \in \mathcal{L}(R) \text{ is } f'(B) \in \mathcal{L}(R)^{?}$

Theorem 6.5. Say
$$f: X \to Y$$
 is measurable. Then, for every $B \in B(Y)$, we must have $f^{-1}(B) \in \Sigma$.
Lemma 6.6. Let $f: X \to Y$ be arbitrary. Then $\Sigma' = \{A \subseteq \Psi \mid F \models A \subseteq \Phi \subseteq Z\}$ is a σ -algebra (on \mathfrak{E}).
 $Z' = Z \vdash (\Sigma) \mid B \in \mathbb{Z}^{2}$.
 $Z' = \zeta \vdash (\Sigma) \mid B \in \mathbb{Z}^{2}$.
 $Z' = \zeta \vdash (\Sigma) \mid B \in \mathbb{Z}^{2}$.
 $Z' = \zeta \vdash (\Sigma) \mid B \in \mathbb{Z}^{2}$.
 $A_{1} \in \zeta \vdash (\mathbb{Z}) = \mathbb{Z}^{\prime}$
 $Wale A_{1} = \zeta \vdash (B_{1}), B_{1} \in \mathbb{Z}$
 $\zeta \vdash (UB_{1}) = U \downarrow^{-1}(B_{1}) = UA_{1}$
 $\Rightarrow UA_{1} \in \mathbb{Z}^{\prime}$. $\Rightarrow howevee$
 $P_{1} = \zeta \vdash (B(Y)) \in A \quad T \to A_{2}$. $\zeta \vdash W \subseteq Y = \varphi = \zeta^{-1}(W) \in \Sigma$.

 $\gg \downarrow^{\prime}(\mathscr{B}(Y)) \subseteq \mathbb{Z}.$

Corollary 6.7. Let $f: X \to [-\infty, \infty]$. Then f is measurable if and only if for all $a \in \mathbb{R}$, we have $\{f < a\} \in \Sigma$. (X, Z) meas some. $\left\{ z = A \right\} = \left\{ x \in X \mid z \in X \mid z \in X \right\}$ any again cet can be expanded as a chabe $= \left\{ \left(\left[- \infty, \alpha \right] \right) \right\}$ intend as intend as. $f'(a,b) = \{f < b \} \cap \{f > a \} \in \mathbb{Z}$ EZ. EL CR+12C

Lemma 6.8. If $f: X \to \mathbb{R}^m$ is measurable, and $g: \mathbb{R}^m \to \mathbb{R}^n$ is Borel, then $g \circ f: X \to \mathbb{R}^n$ is measurable. **Question 6.9.** Is the above true if g was Lebesgue measurable? False) UC P hema ? q $(\underline{j} \circ \underline{j})'(\underline{u}) = \underline{j}'(\underline{j}'(\underline{u}))$ M $\tilde{\mathfrak{f}}(\mathfrak{U}) \in \mathfrak{S}(\mathbb{R}^m)$ 10 Weag Some $(By lenk,) \Rightarrow f'(\tilde{f}(W)) \in \mathbb{Z}.$