HW Q 3/4: $A \subseteq \bigcup_{i=1}^{\infty} E_{i}$, $\lim_{i \to \infty} (E_{i}) < S \in \mathbb{C}$ Handbong meas: $\lim_{X \to 0} H_{\alpha,S}(A) = H_{\alpha,S}(A) = \inf_{X \to 0} \sum_{i=1}^{N} \sum_{j=1}^{N} \int_{X} \sum_{i=1}^{N} \int_{X} \int_{X}$ $S_{\alpha} = H_{\alpha} + H_{\alpha} \leq S_{\alpha}$ $S_{\alpha} \leq 2^{A}$ x = 1/3 cour C by 2 bals of diam 1/3 Claim: Hac + Sa in general Eg : Canta Set.

Is E, a Ball in the Cantar at (ND)

(6)
$$\frac{\lambda(E) = 0 \text{ (contradiction).}}{(d + m \in \mathbb{N})}$$
 $E_m = E \cap (-m, n)$ $\lambda(E) = \lim_{M \to \infty} \lambda(E_m)$
 $\frac{(\lim_{M \to \infty} \lambda(E_m) = 0 \quad \forall m \quad (\Rightarrow \lambda(E) = 0 \Rightarrow QED).}{(\Rightarrow \lambda(E) = 0 \Rightarrow QED).}$
 $P_{L \neq} (\lim_{M \to \infty} h \neq A = \bigcup_{\substack{M \in \mathbb{N} \\ Q \in Q}} (Q + E_m) \qquad \text{cfable disjuman.}}{Q \in Q}$
 $A \text{ is fold } \Rightarrow \underline{\lambda(A)} < \omega \quad \& \quad \lambda(Q + E_m) = \lambda(E_m) \quad \forall Q.$
 $\longrightarrow \lambda(A) = \lambda(E_m) = 0 \quad QED.$

Theorem 5.14. Let $A \subseteq \mathbb{R}^d$. Every subset of A is Lebesgue measurable if and only if $\lambda(A^*) = 0$.

Proof. One direction is immediate. The other direction is accessible with what we know so far, but we won't do the proof in the interest of time. \Box

5.4. Completion of measures. **Theorem 5.15.** $A \in \mathcal{L}(\mathbb{R}^d)$ if and only if there exist $F, G \in \mathcal{B}(\mathbb{R}^d)$ such that $F \subseteq A \subseteq G$ and $\lambda(G - F) = 0$. Pf: MEN, JUn opn, Cn claud & Cn SA SUn X (Un-Cn) Sh $A = UC_n (F - r)$ $G = \bigcap \mathcal{V}_{\mathcal{A}} \quad (G_{\mathcal{C}})_{\mathcal{A}}$ Clarky $F \subseteq A \subseteq G \land \lambda(G - F) \leq \lambda(C_n - U_n) \leq \frac{1}{n} \forall n$ $\Rightarrow \lambda(G-F) = O_{RED}$

Corollary 5.16. Let $\mathcal{N} = \{A \subseteq \mathbb{R}^d \mid \lambda^*(A) = 0\}$. Then $A \in \mathcal{L}(\mathbb{R}^d)$ if and only if $A = B \cup N$ for some $B \in \mathcal{B}(\mathbb{R}^d)$ and $N \in \mathcal{N}$. **Definition 5.17.** Let (X, Σ, μ) be a measure space. We define the completion of Σ with respect to the measure μ by $\longrightarrow \Sigma_{\mu} \stackrel{\text{\tiny def}}{=} \{A \subseteq X \mid \exists F, G \in \Sigma \text{ such that } F \subseteq A \subseteq G \text{ and } \mu(G - F) = 0\}$ For every $\underline{A} \in \Sigma_{\mu}$, find F, G as above and define $\overline{\mu}(\underline{A}) = \mu(F)$. (IOV The well defined) **Definition 5.18.** Let $\mathcal{N} = \{A \subseteq X \mid \exists E \in \Sigma, E \supseteq A, \mu(E) = 0\}^l$. We say (X, Σ, μ) is complete if $\mathcal{N} \subseteq \Sigma$. (R, d,) is comp **Theorem 5.19.** Σ_{μ} is a σ -algebra, $\underline{\mu}$ is a measure on Σ_{μ} , and $(\underline{X}, \Sigma_{\mu}, \underline{\mu})$ is complete. Check p is well defined i (IOU) > (Rt & X) is not BF, CACG, Say AEZM $f_{i}, G_{i} \in \mathbb{Z} \ M(G_{i} - F_{i}) = 0$ FEFSG \Rightarrow F, \subseteq F, V F, \subseteq A \subseteq G, \cap G, \subseteq G $M(G_1 - F_1) = 0 \implies M(F_1 \cup F_2) - F_1 = 0 \implies M(F_2) - M(F_1) \implies M well def$