## 5.2. Regularity of measures.

### **Definition 5.7.** Let X be a metric space, and $\mu$ be a Borel measure on X. We say $\mu$ is regular if:

- (1) For all compact sets K, we have  $\mu(K) < \infty$ .
- (2) For all open sets U we have  $\mu(U) = \sup\{\mu(K) \mid K \subseteq U \text{ is compact}\}.$ (3) For all Borel sets A we have  $\mu(A) = \inf\{\mu(U) \mid U \supseteq A, U \text{ open}\}.$

#### Motivation:

- ▶ Approximation of measurable functions by continuous functions
- ▶ Differentiation of measures
- ▶ Uniqueness in the Riesz representation theorem

Question 5.8. If 
$$\mu$$
 is regular, is  $\mu(A) = \sup\{\mu(K) \mid K \subseteq A, K \text{ compact}\}\$  for all Borel sets  $A$ ?



 $(1) \text{ Let } \underline{\Lambda} \neq \{ \underline{A} \in \mathcal{B}(X) \mid \forall \varepsilon > 0, \ \exists \underline{K} \subseteq A \text{ compact}, \ \underline{U \supseteq A} \text{ open, such that } \mu(U - K) < \varepsilon \}.$ Let USX den. NTS 42>03KSU det 2 M(U-K)<2. Warte U = UKn, Kn CkX is at & Kn CKnr1 ( Eq  $K_{M} = \frac{2}{3} \times e \times | d(x, U^{c}) > \frac{1}{M}$  ) 3 p(u) = lim p(kn)

(3)  $\Lambda$  is a  $\lambda$ -system. (In this case it's easy to directly show that  $\Lambda$  is a  $\sigma$ -algebra.)

Vi, B. El > 3 K, eft & U, dut k; & B, & U;  $\lambda \mu(U_i - k_i) < \frac{2}{2i}$ Catainly  $VK_i \subseteq VA_i \subseteq V$   $U_i$   $VK_i \subseteq VK_i \subseteq VK$ take V for some large N & finish.

# Corollary 5.11. Let X be a metric space and $\mu$ a Borel measure on X. Suppose there exists a sequence of sets $B_n \subset X$ such that $\bar{B}_n \subset \mathring{B}_{n+1}$ , $\bar{B}_n$ is compact, $X = \bigcup_{1}^{\infty} B_n$ and $\mu(B_n) < \infty$ . Then $\mu$ is regular. Further:

- (1) For any Borel set A,  $\mu(A) = \sup\{\mu(K) \mid K \subseteq K \text{ is compact}\}.$
- (2) For any  $\varepsilon > 0$ , there exists  $U \supseteq A$  open and  $C \subseteq A$  closed such that  $\mu(U C) < \varepsilon$ .

Proof. On homework.



Theorem 5.12. Let 
$$A \in \mathcal{L}(\mathbb{R}^d)$$
,  $A(A)$ .  $A = \{A \in \mathcal{L}(\mathbb{R}^d), A(A)\}$ .  $A = \{A \in \mathcal{L}(\mathbb{R}^d), A(A)\}$   $A = \{A \in \mathcal{L}$ 

LC = W K Closed } -> done!

### 5.3. Non-measurable sets.

**Theorem 5.13.** There exists  $E \subseteq \mathbb{R}$  such that  $E \notin \mathcal{L}(R)$ .

### *Proof:*

- (1) Let  $C_{\alpha} = \{ \beta \in \mathbb{R} \mid \beta \alpha \in \mathbb{Q} \}$ . (This is the coset of  $\mathbb{R}/\mathbb{Q}$  containing  $\alpha$ .)
- (2) Let  $E \subseteq \mathbb{R}$  be such that  $|E \cap C_{\alpha}| = 1$  for all  $\alpha$ .
- (3) Note if  $q_1, q_2 \in \mathbb{Q}$  with  $q_1 \neq q_2$ , then  $q_1 + E \cap q_2 + E = \emptyset$ .
- (4) Suppose for contradiction  $E \in \mathcal{L}(\mathbb{R})$ .
- (5)  $\lambda(E) > 0$