5.2. Regularity of measures.

Definition 5.7. Let X be a metric space, and μ be a Borel measure on X. We say μ is regular if: (1) For all compact sets K, we have $\mu(K)<\infty$.
(2) For all open sets U we have $\mu(U)=\sup \{\mu(K) \mid K \subseteq U$ is compact $\}$.
(3) For all Borel sets A we have $\mu(A)=\inf \{\mu(U) \mid U \supseteq A, U$ open $\}$.

Motivation:
\triangleright Approximation of measurable functions by continuous functions
\triangleright Differentiation of measures
\triangleright Uniqueness in the Riesz representation theorem
Question 5.8. If μ is regular, is $\mu(A)=\sup \{\mu(K) \mid K \subseteq A, K$ compact $\}$ for all Borel sets A ?

$$
(\text { false } \rightarrow \text { find a } c-e x)
$$

Satisfies (1)done. $\Rightarrow \mu$ is regular. \&
(2) Further, for any $\varepsilon>0$ there exists an open set $\underline{U} \supseteq A$ and a closed set $C \subseteq A$ such that $\mu(U-C)<\varepsilon$
(3) If $\mu(A)<\infty$, then can make C above compact.

Proof. Will return and prove it using the next theorem.
Theorem 5.10. Suppose X is a compact metric space, and μ is a finite Botel measure on X. Then μ is regular. Further, for any

Proof:
(1) Le $\underline{\Lambda} \neq\{\underline{A} \in \mathcal{B}(X) \mid \forall \varepsilon>0, \exists \underline{K} \subseteq A$ compact, $U \supseteq A$ open, such that $\mu(U-K)<\varepsilon\}$.
(2) λ contains all open sets.

Lat $U \subseteq x$ pan. NTS $\forall=>0 \exists k \subseteq U$ of $\sigma \mu(u-k)<\varepsilon$.
Wane $U=\bigcup_{1}^{\infty} k_{n}, \quad k_{n} \subseteq k^{\infty}$ is at \& $k_{n} \subseteq k_{n+1}$

$$
\begin{aligned}
& \quad\left(E_{g} k_{n}=\left\{x \in x \left\lvert\, d\left(x, U^{c}\right) \geqslant \frac{1}{n}\right.\right\}\right) \\
& \Rightarrow \mu(u)=\lim _{n \rightarrow \infty} \mu\left(k_{n}\right) \quad Q \in D
\end{aligned}
$$

((3) Λ is a λ-system. (In this case it's easy to directly show that Λ is a σ-algebra.)
(4) Dynkin's Lemma implies $\Lambda \supseteq \mathcal{B}(X)$, finishing the proof.

Pfof (3): $1 X \in \Lambda(\because X$ is appen).
NTS: (2) $A_{1}, A_{2} \in \Lambda, A_{1} \subseteq A_{2} \Rightarrow A_{2}-A_{1} \in \Lambda$
Pf: Pick $\varepsilon>0, \exists k_{i}, u_{i}+k_{i}$ c中t, U_{i} open $k_{i} \subseteq A_{i} \subseteq U_{i}$

$$
\begin{aligned}
& \& \mu\left(a_{i}-k_{i}\right)<\varepsilon \quad\left(\because A_{i} \in \Lambda\right) \\
& k_{2}-u_{1} \subseteq A_{2}-A_{1} \subseteq \underbrace{u_{2}-k_{1}}, \quad \& \mu\left(\left(u_{2}-k_{1}\right)-\left(k_{2}-u_{1}\right)\right) \\
& \text { (3) } A_{1}, A_{2} \cdots \in \Lambda \text {. NTS } \bigcup_{1}^{\infty} A_{1}, E \Lambda \text {. op } m \text {. } \leq \mu\left(U_{2}-k_{2}\right)+\mu\left(U_{1}-K_{1}\right)=22 \\
& A_{1} \subseteq A_{i+1} \quad P f: B_{i}=A_{i}-A_{i-1} \text {. Thm } \cup A_{i}=\bigcup_{\text {diaj }} B_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \forall_{i}, B_{i} \in 1 \Rightarrow \exists k_{i} \text { apt \& U } U_{i} \text { aprt } k_{i} \subseteq B_{i} \subseteq U_{i} \\
& \& \mu\left(u_{i}-k_{i}\right)<\frac{q}{2^{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { the } \bigcup_{1}^{N} \text { for seme lange } N \text { \& firisth. }
\end{aligned}
$$

Corollary 5.11. Let X be a metric space and μ a Bored measure on X. Suppose there exists a sequence of sets $B_{n} \subset X$ such that $\bar{B}_{n} \subset \stackrel{\circ}{B}_{n+1}, \bar{B}_{n}$ is compact, $X=\cup_{1}^{\infty} B_{n}$ and $\mu\left(B_{n}\right)<\infty$. Then μ is regular. Further:
(1) For any Bored set $A, \mu(A)=\sup \{\mu(K) \mid K \subseteq K$ is compact $\}$.
(2) For any $\varepsilon>0$, there exists $U \supseteq A$ open and $C \subseteq A$ closed such that $\mu(U-C)<\varepsilon$.

Proof. On homework.

Theorem 5.12. Let $A \in \mathcal{L}\left(\mathbb{R}^{d}\right), \underline{\lambda(A)} \quad(\lambda=$ Lebesgue moas $)$.
(1) $\lambda(A)=\inf \{\lambda(U) \mid U \supseteq A, U$ open $\}=\sup \{\lambda(K) \mid K \subseteq A, K$ compact $\}$.
(2) There exists $\varepsilon>0, C \subseteq \underline{A}$ closed and $U \supseteq$ A open such that $\underbrace{\lambda(U-C)}<\varepsilon$.
of of $(1): \lambda(A)=\operatorname{iof}\left\{\lambda(u) \mid U \supseteq A, \quad u_{\text {data }}\right\}$

$$
\left(\because \lambda(A)=\lambda^{*}(A)=\operatorname{imf}_{n}\left\{\sum l\left(I_{k}\right) \mid+r \cup I_{k} \supseteq A, I_{k} \text { eden elis }\right\}\right.
$$

\rightarrow Cave 1:A bod. $\lambda(A)=\lambda(I)-\lambda(I-A), I \geqslant A$ is some closed cell

If of (2): he 1: A fond \rightarrow Use pact 1.
Core 2: Write $A=\bigcup_{1}^{\infty} \underbrace{\text { S }}_{A_{n} \text {. }}$.
Core $1 \Rightarrow \exists U_{n} \supseteq A_{n} \& k_{n} \subseteq A_{n}+U_{n}$ dan , k_{n} ct t \& $\mu\left(U_{n}-k_{n}\right)<\frac{\varepsilon}{2}$
$\left.\begin{array}{rl}\text { Let } U & =\bigcup_{0}^{\infty} U_{n} \longleftarrow \text { den. } \\ \text { l } C & =\bigcup_{1}^{\infty} K_{n} \longleftarrow \text { dosed }\end{array}\right\} \longrightarrow$ done!

5.3. Non-measurable sets.

Theorem 5.13. There exists $E \subseteq \mathbb{R}$ such that $E \notin \mathcal{L}(R)$.
Proof:
(1) Let $C_{\alpha}=\{\beta \in \mathbb{R} \mid \beta-\alpha \in \mathbb{Q}\}$. (This is the coset of \mathbb{R} / \mathbb{Q} containing α.)
(2) Let $\overline{E \subseteq \mathbb{R}}$ be such that $\left|E \cap C_{\alpha}\right|=1$ for all α.
(3) Note if $q_{1}, q_{2} \in \mathbb{Q}$ with $q_{1} \neq q_{2}$, then $q_{1}+E \cap q_{2}+E=\emptyset$.
(4) Suppose for contradiction $E \in \mathcal{L}(\mathbb{R})$.
(5) $\lambda(E)>0$

