5.2. Regularity of measures.

Definition 5.7. Let X be a metric space, and p be a Borel measure on X. We say p is regular if:

or all compact sets K, we have u(K) < oc.
For all open sets U we have u(U) = sup{u(K) | K C U is compact}.
(3) For all Borel sets A we have u(A) = 1nf{,u( )|U D A, U open}.

Motivation:

> Approximation of measurable functions by continuous functions
> Differentiation of measures

> Uniqueness in the Riesz representation theorem

Question 5.8. If u is reqular, is u(A) = sup{u(K) | K C A, K compact} for all Borel sets A?
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(2) Further, for any £ >0 & > 0 there exists an open set U> A and a closed set C C A such that
(3) If u(A) < oo, then can make C' above compact.
—
Proof. Will return and prove it using the next theorem. O
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[Remark 59. (1) If X _,K and 4 i hen /AA}F up{u IA;?| KCA K compact}]j
u(U = C) <

Theorem 5.10. Suppose X is a compact metric space, and_y is a finite Borel measure on X. {Then p is regula} Further, for any

€ >0, there exists U 2 A open and K C A ¢ such that p(U — K) < e.
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Proof:
(1) L {A € B(X)|Ve >0, 3K C A compact, U 2 A open, such that u(U — K) < e}.
ains all open sets.
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L
a A-system. (In this it’s easy to directly show that A is a o-algebra.)
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Corollary 5.11. Let X be a metric space and p a Borel measure on X. Suppose there exists a sequence of sets By, C X such that
B - Bn+1, B, is compact, X = U B, and. Then p is reqular. Further:

(1) For any Borel set A, p(A) = sup{u(K) | K C K is compact}.
(2) For any e > 0, there exists U 2 A open and C C A closed such that n(U — C) < &

Proof. On homework.
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Theorem 5.12. Let A € L(R )ﬁ} <>\ AQL{QM[ W4>
A,

(1)@1\_' f{)\ JIU 2 A, U open} = sup{\(K) |K K compact}.
(2) Ther €>0,CC A closed a dUDA open htht)\(U—C <e.
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5.3. Non-measurable sets.

Theorem 5.13. There emstswfuch that E ¢ L(R).
Proof:

(1) Let Cq ={B € R[S —a € Q}. (This is the coset of R/Q containing c.)
(2) Let E C R be such that |[ENCy| =1 for all a.

(3) Note ST q1,q2 € Q with ¢1 # g2, then ¢ + ENgy + E = ().

(4) Suppose for contradiction E € L(R).

(5) AM(E) >



