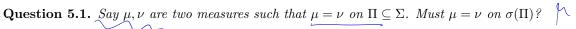
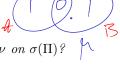
5. Abstract measures

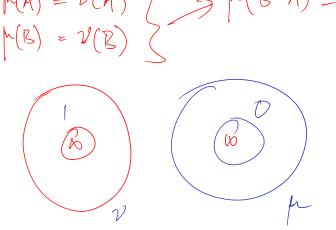
5.1. Dynkin systems.



 $\,\triangleright\,$ Clearly need Π to be closed under intersections.

$$\Rightarrow$$
 $M=V$ on $T(\Pi)$





Question 5.2. Let
$$\Lambda = \{A \in \Sigma \mid \mu(A) = \nu(A)\}$$
. Must Λ be a σ -algebra?

If $A, B \in \Lambda$, must $A \cup B \in \Lambda$?

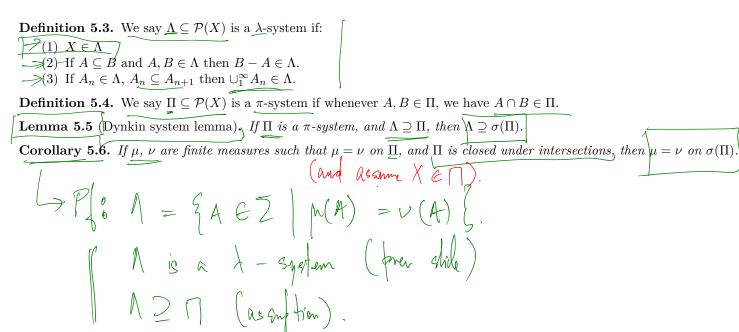
If $A \subseteq B$, $A, B \in \Lambda$, must $B = A \in \Lambda$?

If $A \subseteq B$, $A, B \in \Lambda$, must $A \subseteq B \in \Lambda$?

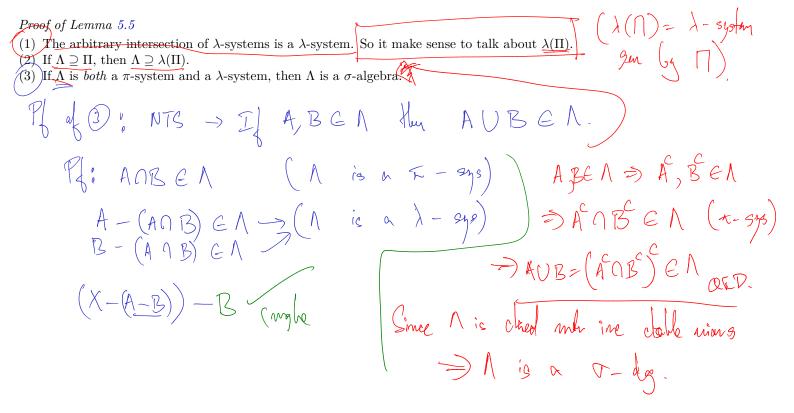
If $A \subseteq A_{i+1} \in \Lambda$, must $A \subseteq A \in \Lambda$?

A $A \subseteq B \in \Lambda$

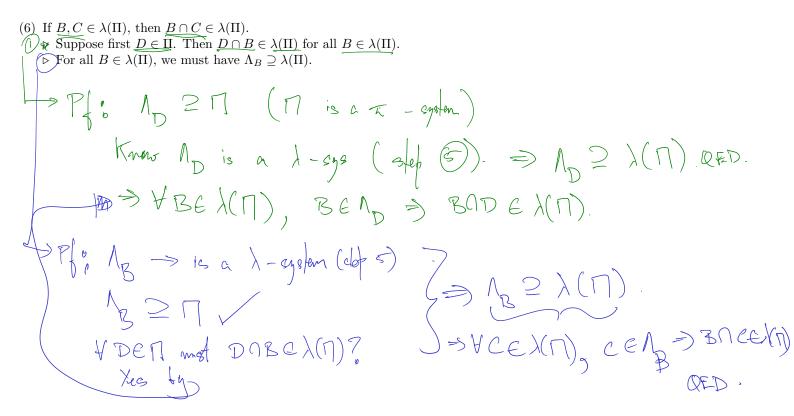
A $A \subseteq B$



 $\begin{array}{ccc} & & & & \\ & &$



- (4) To finish the proof, we only need to show $\lambda(\Pi)$ is closed under intersections. (5) Let $C \in \lambda(\Pi)$, and define $\Lambda_C = \{B \in \lambda(\Pi) \mid B \cap C \in \lambda(\Pi)\}$. Then Λ_C is a λ -system. P: WXEM (Yes: XNCEXM)? = Yes.) 2) A, BEA, ACB. NTS B-AE AC. ire NTS (B-A) nc E \((\Pi)\) $(B-A) \cap C = (B \cap C) - (A \cap C)$
- 3) I'm mine STrue (chak) /(17)



5.2. Regularity of measures. \nearrow h is a massive $(X, \&(X))$.
Definition 5.7. Let X be a metric space, and μ be a Borel measure on X. We say μ is regular if:
(2) For all compact sets K , we have $\mu(K) < \infty$. (3) For all Borel sets A we have $\mu(A) = \inf\{\mu(U) \mid U \supseteq A, U \text{ open}\}$. (a) Motivation:
Motivation:
Approximation of measurable functions by continuous functions Differentiation of measures
Uniqueness in the Riesz representation theorem
Question 5.8. If μ is regular, is $\mu(A) = \sup\{\mu(K) \mid K \subseteq A, K \text{ compact}\}\$ for all Borel sets A ?
Jane Wan X = R (closed sale)
noter that I then; X cf & p finde
(K & A) Then h is regular

Remark 5.9. (1) If $X = \mathbb{R}^d$, and μ is regular, then $\mu(A) = \sup\{\mu(K) \mid K \subseteq A, K \text{ compact}\}.$ (2) Further, for any $\varepsilon > 0$ there exists an open set $U \supseteq A$ and a closed set $C \subseteq A$ such that $\mu(U - C) < \varepsilon$. (3) If $\mu(A) < \infty$, then can make C above compact. *Proof.* Will return and prove it using the next theorem.

Theorem 5.10. Suppose X is a compact metric space, and μ is a finite Borel measure on X. Then μ is regular. Further, for any $\varepsilon > 0$, there exists $U \supseteq A$ open and $K \subseteq A$ closed such that $\mu(U - K) < \varepsilon$.