


Definition 4.25. Define the Lebesgue o-algebra b L}Rd {E|X(A) =X (AN E)“* (AN E°) YA C R?}.
Definition 4.26. Define the Lebesgue measure by \(E) = \*(E) for all E € L(RY).
Remark 4.27. By Carathéodory, £(R?) is a o-algebra, and ) is a measure on L.
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Question 4.28. Is L(R




oposition 4.29.\If I CR? is a cell, then I € L(R?).
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Here are two results that will be proved later:
Theorem 4.32.| L(R? In fact the cardinality of L(R?) is larger than that of B(RY).)
Theorem 4.33.|L(R?) C P(RY).
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Theorem 4.34 Uniqueness). If p_is any measure on (RY, B(RY)) such that u(I) = \(I) for all cells, then u(E) = \(E) for all
Ec B(Rd) L’A #‘

Question 4.35. Let 5 C P(X), and suppose W,V are two measures which agree on £. Must they agree on §(H)? V’Cg>
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5. Abstract measures

5.1. Dynkin systems. / IO 0 ,

Question 5.1. Say u.v_are two measures such that p = v or@ Y. Must p=v on o(I)?
I — v’”\____/—-m

> Clearly need # to be closed under intersections.
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Question 5.2. Let A={AeX| u( ) = I/(A)}. Must A be a o-algebra?
- -
> IfA,BeA must AUB €€ A? \)()

> IfAC B, A B € A, must B — A € A? C v, %,M} \/¢g>
IfﬁYHlGA must U°°A € A? y\’ 7
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