$X^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} B(x_j, r_i) \geq A \right\}$ we so.

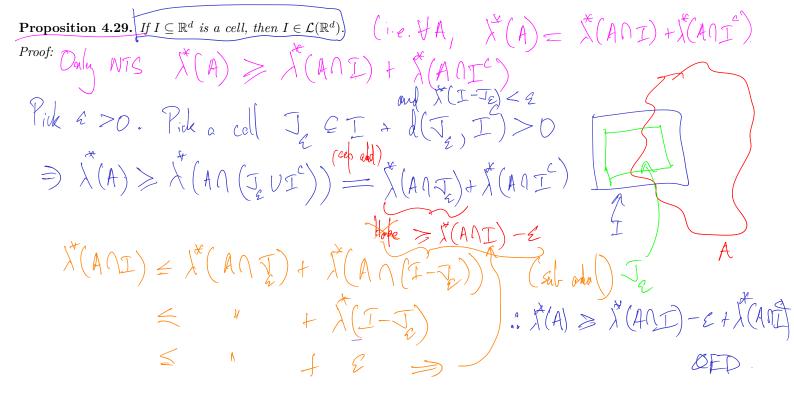
Definition 4.25. Define the Lebesgue σ -algebra by $\mathcal{L}(\mathbb{R}^d) = \{E \mid \lambda^*(A) = \lambda^*(A \cap E) \mid \lambda^*(A \cap E^c) \mid \forall A \subseteq \mathbb{R}^d\}.$

Definition 4.26. Define the Lebesgue measure by $\lambda(E) = \lambda^*(E)$ for all $E \in \mathcal{L}(\mathbb{R}^d)$.

Definition 4.26. Define the Lebesgue measure by
$$\lambda(E) = \lambda^*(E)$$
 for all $E \in \mathcal{L}(\mathbb{R}^d)$.

Remark 4.27. By Carathéodory, $\mathcal{L}(\mathbb{R}^d)$ is a σ -algebra, and λ is a measure on \mathcal{L} .

Question 4.28. Is $\mathcal{L}(\mathbb{R}^d)$ non-trivial?



Here are two results that will be proved later:

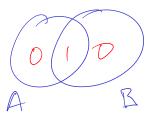
Theorem 4.32. $\mathcal{L}(\mathbb{R}^d) \supseteq \mathcal{B}(\mathbb{R}^d)$. (In fact the cardinality of $\mathcal{L}(\mathbb{R}^d)$ is larger than that of $\mathcal{B}(\mathbb{R}^d)$.)

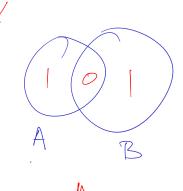
Theorem 4.32. $\mathcal{L}(\mathbb{R}^d)\supsetneq\mathcal{B}(\mathbb{R}^d)$. Theorem 4.33. $\mathcal{L}(\mathbb{R}^d)\subsetneq\mathcal{P}(\mathbb{R}^d)$.

Theorem 4.34 (Uniqueness). If $\underline{\mu}$ is any measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ such that $\underline{\mu(I) = \lambda(I)}$ for all cells, then $\underline{\mu(E) = \lambda(E)}$ for all

Question 4.35. Let $\mathcal{E} \subseteq \mathcal{P}(X)$, and suppose $\underline{\mu}, \underline{\nu}$ are two measures which agree on \mathcal{E} . Must they agree on $\mathcal{E}(E)$?

2





Claim: h \le \ $A \in \mathcal{B}(\mathbb{R}^d)$. $A \subseteq \mathcal{O}(\mathbb{Z}_k) \Rightarrow \mu(A) \leq \mathcal{O}(\mathbb{Z}_k) = \mathcal{O}(\mathbb{Z}_k)$ Claim 2 & Say E is bold. Then $\lambda(E) \leq \mu\mu(E)$ Pf: Final a rect I + I $\geq E$. $\mu(I-E) = \lambda(I-E) = \lambda(E) - \lambda(E)$ Claim 3; $\forall E$, $\lambda(E) \leq \mu(E)$ MAD- $\mu(E)$ $\Rightarrow \mu(E) \Rightarrow \lambda(E) \Rightarrow \lambda(E)$ OFD. Pf: Warie E = DE, , E, one disj 2 bold 2 voe claim 2. QED-

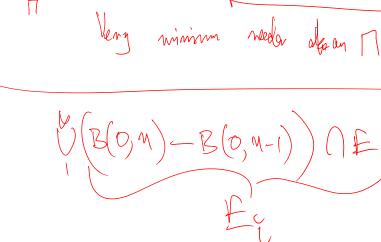
For 4.34 % Know $\mu(I) = \lambda(I) + cells I.$

5. Abstract measures

5.1. Dynkin systems.

Question 5.1. Say μ, ν are two measures such that $\mu = \nu$ on $\Pi \subseteq \Sigma$. Must $\mu = \nu$ on $\sigma(\Pi)$?

 $\,\triangleright\,$ Clearly need ${\underline{\it 8}}$ to be closed under intersections.



Question 5.2. Let
$$\Lambda = \{A \in \Sigma \mid \underline{\mu(A)} = \nu(A)\}$$
. Must Λ be a σ -algebra?

ightharpoonup If $A_i \subseteq A_{i+1} \in \Lambda$, must $\bigcup_{i=1}^{\infty} A_i \in \Lambda$?

Question 5.2. Let
$$\Lambda = \{A \in \Sigma \mid \mu(A) = \nu(A)\}$$
. Must Λ be a σ -algebra ρ If $A, B \in \Lambda$, must $A \cup B \in \Lambda$?

If
$$A, B \in \Lambda$$
, must $A \cup B \in \Lambda$? NO
If $A \subseteq B, A, B \in \Lambda$, must $B - A \in \Lambda$?
If $\widehat{A_i} \subseteq \widehat{A_{i+1}} \in \Lambda$, must $\bigcup_{1}^{\infty} \widehat{A_i} \in \Lambda$?
If $\widehat{A_i} \subseteq \widehat{A_{i+1}} \in \Lambda$, must $\bigcup_{1}^{\infty} \widehat{A_i} \in \Lambda$?
If $\widehat{A_i} \subseteq \widehat{A_{i+1}} \in \Lambda$ must $\widehat{A_i} \in \Lambda$?