Proposition 4.18 (Translation invariance). For all $A \subseteq \mathbb{R}^d$, $\alpha \in \mathbb{R}^d$, $\lambda^*(A) = \lambda^*(\alpha + A)$. Last fine; $\lambda^* \longrightarrow$ belowing OUTER weache. $\longrightarrow \lambda(A) = \inf \left\{ \begin{array}{c} \mathbb{Z} \mid (\mathbb{Z}_k) \mid V \mathbb{I}_k \ge A \\ \mathbb{Z} \mid S \land dk \end{array} \right\}$ $(\mathcal{A}_{i}) \leq \mathcal{A}_{i}$ (set and) Toolog ? Want a meas out of X $l(I+\kappa) = l(I)$ Haar Mehsme

4.2. Carathéodory Extension. Our goal is to start with an outer measure, and restrict it to a measure.

Definition 4.19. We say μ^* is an outer measure on X if:

- (1) $\mu^* \colon \mathcal{P}(X) \to [0, \infty], \text{ and } \mu^*(\emptyset) = 0.$
- (2) If $A \subseteq B$ then $\mu^*(A) \leq \mu^*(B)$.

(2) If $A \subseteq B$ then $\mu(A) \leq \mu(B)$. \rightarrow (3) If $A_i \subseteq X$ (not necessarily disjoint), then $\mu^*(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu^*(A_i)$. (containe Swo - additionary)

Example 4.20. Any measure is an outer measure.

Example 4.21. The Lebesgue outer measure is an outer measure.

Theorem 4.22 (Carathéodory extension). Let $\underline{\Sigma} \stackrel{\text{def}}{=} \{ \underline{E} \subseteq X \mid \mu^*(\underline{A}) = \mu^*(A \cap E) + \mu^*(A \cap E^c) \forall A \subseteq X \}$. Then $\underline{\Sigma}$ is a σ -algebra, and μ^* is a measure on (X, Σ) .

Remark 4.23. Clearly $\mu^*(A) \leq \mu^*(A \cap E) + \mu^*(A \cap E^c)$ for all E, A.

Intuition: Suppose $\mu^* = \lambda^*$. In order to show $\mu^*(A) \ge \mu^*(A \cap E) + \mu^*(A \cap E^c)$, cover A by cells so that $\mu^*(A) \ge \sum \ell(I_k) - \varepsilon$. Split this cover into cells that intersect E and cells that intersect E^c . If E is nice, hopefully the overlap is small.

 $\begin{array}{l}
\left| \uparrow^{*}(A) \geqslant \mathbb{Z}\left(\left| \mathbb{I}_{k} \right\rangle - \mathbb{E} \right| = \mathbb{Z}\left(\left| \mathbb{I}_{k} \right\rangle + \mathbb{Z}\left(\left| \mathbb{I}_{k} \right\rangle \right) - \mathbb{Z}\left(\left| \mathbb{I}_{k} \right\rangle \right) - \mathbb{E} \\
\geqslant \mu^{*}(A \cap \mathbb{E}) + \mu^{*}(A \cap \mathbb{E}^{c}) - \mathbb{Z}\left(\left| \mathbb{I}_{k} \right\rangle \right) - \mathbb{E} \\
\end{array}$ Hope this is small.

Proof of Theorem 4.22 (availage n $\geq NTS \mu^{*}(A) = \mu^{*}(A \cap \phi) + \mu^{*}(A \cap X)$ $(1) \ \emptyset \in \Sigma.$ $E \in \Sigma \implies E^c \in \Sigma.$ $E \in \Sigma \implies E^{\circ} \in \Sigma.$ $E, F \in \Sigma \implies E \cup F \in \Sigma. \text{ (Hence } E_1, \dots, E_n \in \Sigma \implies \bigcup_{i=1}^n E_i \in \Sigma. \text{)}$ $E \in \mathbb{Z} \longrightarrow \mathcal{M}^{*}(A \cap E) + \mathcal{M}^{*}(A \cap E) = \mathcal{M}^{*}(A)$ JNB ENFEZ. $\operatorname{MTS}\mu^{*}(A \cap (E \cup F)) + \mu^{*}(A \cap (E \cup F)^{c}) = \underbrace{\mathbb{L}^{E} \subset \mathcal{L}^{e}}_{\mu^{*}(A)}$ $E' \in \mathbb{Z}^{2}$ $\mu^{*}(\mathbb{P}A \cap E') + \mu^{*}(A \cap (E')) = \mu^{*}(A) \vee$ $= \mu^{\pm} (A \cap (E \cup F) \cap E) + \mu^{\pm} (A \cap (E \cup F) \cap E) + \mu^{\pm} (A \cap (E \cup F)^{c})$ $(: E \in \Sigma)$. $=\mu^{*}(A \cap E) + \mu^{*}(A \cap F \cap E^{C}) + \mu^{*}(A \cap E^{C} \cap F^{C})$ $M^{(A\cap E^{C})}$ (""FEZ) $= \mu^{\star}(A)_{\alpha \in \Gamma}$

(4) If $E_1, \ldots, E_n \in \Sigma$ are pairwise disjoint, $A \subseteq X$, then $\mu^*(A \cap (\bigcup_{i=1}^n E_i)) = \sum_{i=1}^n \mu^*(A \cap E_i)$. NTS $\mu^{*}(A \cap (E \cup F)) = \mu^{*}(A \cap E) + \mu^{*}(A \cap F)$ ($\forall A \subseteq X, E, F \subseteq \mathbb{Z}$) $E \Pi F = \phi$ $P_{f}: p^{*}(A \cap (E \cup F)) = p^{*}(A \cap (E \cup F) \cap E) + p^{*}($ $= \mu^{*}(A \cap E) + \mu^{*}(A \cap F)$ ED

(5) Σ is closed under countable *disjoint* unions, and μ^* is countably additive on Σ (\Rightarrow Z is a ∇ - Mg) *Proof:* Let $E_1, E_2, \ldots, \in \Sigma$ be pairwise disjoint, and $A \subseteq X$ be arbitrary. $\forall E \in \Sigma \subseteq NTS \forall A$, $\mu^*(A \cap (\bigcup E_1)) \neq \mu^*(A \cap (\bigcup E_1)) = \mu^*(A)$. $\mu^{*}(A) = \mu^{*}(A \cap (\bigvee_{i} E_{i})) + \mu^{*}(A \cap (\bigvee_{i} E_{i})^{c})$ (" VEEEZ) $\frac{1}{47} \sum_{\mu} \mu^{\text{H}}(A \land E_{i}) + \mu^{\text{H}}(A \land (U E_{i})^{\text{C}})$ YN send N -> a $\Rightarrow \mu^{*}(A) \geq \left(\sum_{i=1}^{\infty} \mu^{*}(A \cap E_{i}) + \mu^{*}(A \cap (\bigcup_{i=1}^{\infty} E_{i}) \right)$ $\Rightarrow \mu^{\star}(A) = \mu^{\star}(A \cap (V E_{i})) + \mu^{\star}(A \cap (V E_{i}))$ $\geqslant \mu^{\star}(A \cap (\overset{\circ}{\mathcal{V}}_{E_{i}})) + \mu^{\star}(A \cap (\overset{\circ}{\mathcal{V}}_{E_{i}})^{c}) \geqslant \mu^{\star}(A)$

Remark 4.24. Note, the above shows $\mu^*(A \cap (\bigcup_{i=1}^{\infty} E_i)) = \sum_{i=1}^{\infty} \mu^*(A \cap E_i).$

Definition 4.25. Define the Lebesgue σ -algebra by $\mathcal{L}(\mathbb{R}^d) = \{E \mid \lambda^*(A) = \lambda^*(A \cap E) \cap \lambda^*(A \cap E^c) \ \forall A \subseteq \mathbb{R}^d\}.$

Definition 4.26. Define the Lebesgue measure by $\underline{\lambda(E)} = \underline{\lambda^*(E)}$ for all $E \in \mathcal{L}(\mathbb{R}^d)$.

Remark 4.27. By Carathéodory, $\mathcal{L}(\mathbb{R}^d)$ is a σ -algebra, and λ is a measure on \mathcal{L} .

Question 4.28. Is $\mathcal{L}(\mathbb{R}^d)$ non-trivial?