Proposition 4.18(Translation invariance). For all $A \subseteq \mathbb{R}^{d}, \alpha \in \mathbb{R}^{d}, \lambda^{*}(A)=\lambda^{*}(\alpha+A)$.
hat time ; $\lambda^{*} \rightarrow$ Cdragene OVTER measme $\rightarrow \lambda^{*}(A)=\inf \left\{\sum_{k} l\left(I_{k}\right) \mid U I_{k} \geq A\right.$

$$
G \lambda^{4}\left(\bigcup_{1}^{\infty} A_{i}\right) \leq \sum_{1}^{\infty} \lambda^{*}\left(A_{i}\right) \quad(\text { sol } \operatorname{add} d)
$$

Toodag: Wat a meis ant of λ^{*}

$$
l(I+\alpha)=l(I)
$$

"Haor Mensme"
4.2. Carathéodory Extension. Our goal is to start with an outer measure, and restrict it to a measure.

Definition 4.19. We say μ^{*} is an outer measure on X if:
(1) $\mu^{*}: \mathcal{P}(X) \rightarrow[0, \infty]$, and $\mu^{*}(\emptyset)=0$
(2) If $A \subseteq B$ then $\mu^{*}(A) \leqslant \mu^{*}(B)$.
$\rightarrow(3)$ If $A_{i} \subseteq X($ not necessarily disjoint $)$, then $\mu^{*}\left(\cup_{i=1}^{\infty} A_{i}\right) \leqslant \sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right)$.
Example 4.20. Any measure is an outer measure.)

Example 4.21. The Lebesgue outer measure is an outer measure.

Theorem 4.22 (Carathéodory extension). Let $\Sigma \stackrel{\text { def }}{=}\left\{\subseteq \subseteq X \mid \mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right) \forall A \subseteq X\right\}$. Then Σ is a σ-algebra, and μ^{*} is a measure on (X, Σ).
Remark 4.23. Clearly $\mu^{*}(A) \leqslant \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)$ for all E, A.
Intuition: Suppose $\mu^{*}=\lambda^{*}$. In order to show $\mu^{*}(A) \geqslant \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)$, cover A by cells so that $\mu^{*}(A) \geqslant \sum \ell\left(I_{k}\right)-\varepsilon$. Split this cover into cells that intersect E and cells that intersect E^{c}. If E is nice, hopefully the overlap is small.
(7) $r^{*}(A) \leqslant p^{*}(A \cap E)+r^{*}\left(A \cap E^{2}\right) \quad \forall A, E$ (ant and $)$.
(2) For wis ads $E(E \in \Sigma)$ abs here $\eta^{*}(A) \geqslant x^{*}(A \cap E)+p^{*}\left(A \cap E^{c}\right)$
$G \dot{\lambda}: A \in$ una by culls: $A \subseteq \bigotimes_{1} I_{k} ; \mu^{*}(A) \geqslant \sum l\left(I_{k}\right)-\varepsilon$.

$$
\begin{aligned}
& \left\{I_{k}\right\}=\left\{J_{k}\right\} \cup\left\{J_{k}^{\prime}\right\}, \cup\left\{J_{k}^{\prime \prime}\right\} \\
& J_{b} \cap k_{k} \neq \phi \quad J_{k}^{\prime} \cap E^{c} \neq \phi \quad J_{k}^{\prime \prime} \cap E_{2} \neq \phi \leftharpoonup
\end{aligned}
$$

$$
\begin{aligned}
\mu^{*}(A) \geqslant \sum l\left(I_{k}\right)-\varepsilon=\sum l\left(J_{k}\right)+\sum l\left(J_{k}^{\prime}\right)-\sum l\left(\sigma_{k}^{\prime \prime}\right)-\varepsilon \\
\geqslant \mu^{\mu^{*}}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)-\sum l\left(\bar{J}_{k}^{\prime \prime}\right)-\varepsilon \\
\text { Hape thas is small! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3)NT EUF EE. } \quad E \in \sum \Rightarrow \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{C}\right)=\mu^{*}(A)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\quad \stackrel{\text { HS }}{=\mu^{*}(A \cap(E \cup F) \cap E)+\mu^{*}\left(A \cap(E \cup F) \cap E^{c}\right)+\mu^{*}(A) \quad \forall A}\left(A \cap(E \cup F)^{c}\right) \quad(\because E \in \Sigma)-
\end{array} \\
& =\mu^{*}(A \cap E)+\mu^{*}\left(A \cap F \cap E^{c}\right)+\underbrace{\mu^{*}\left(A \cap E^{c} \cap F^{C}\right)}_{A^{*}\left(A \cap E^{C}\right)}(\underbrace{(\cap O F}_{0 F E \Sigma)} \\
& \Rightarrow=\mu^{*}(A)_{O D D}
\end{aligned}
$$

(4) If $E_{1}, \ldots, E_{n} \in \Sigma$ are pairwise disjoint, $A \subseteq X$, then $\mu^{*}\left(A \cap\left(\cup_{1}^{n} E_{i}\right)\right)=\sum_{1}^{n} \mu^{*}\left(A \cap E_{i}\right)$.
$\operatorname{NTS} \mu^{*}(A \cap(E \cup F))=\mu^{*}(A \cap E)+\mu^{*}(A \cap F) \quad\left(\forall A \subseteq X, E, F \subseteq \sum\right)$

$$
\begin{aligned}
P f: \gamma^{*}(A \cap(E \cup F)) & =r^{*}(A \cap(E \cup F) \cap E)+\mu^{*}(\\
& =\mu^{*}(A \cap E)+\mu^{*}(A \cap F)
\end{aligned}
$$

Q ED
(5) $\begin{aligned} & \left.\Sigma \text { is closed under countable disjoint unions, and } \frac{\mu^{*} \text { is countably additive on } \Sigma,}{\text { Proof: Let } E_{1}, E_{2}, \ldots, \in \Sigma \text { be pairwise disjoint, and } A \subseteq X \text { be arbitrary. }} \Rightarrow \sum \text { is a } \sigma \text { - } \mathrm{alg}\right)\end{aligned}$ uTS $\bigcup_{1} E_{i} \in \Sigma \Leftrightarrow \operatorname{NTS} \forall A, \mu^{*}\left(A \cap\left(\bigcup_{E}\right)\right)+h^{*}\left(A A\left(U V^{*}\right)^{*}\right)^{\text {is a mars! }}$

$$
\begin{aligned}
& \mu^{*}(A)=\mu^{*}\left(A \cap\left(\tilde{U}_{E}\right)\right)+\mu^{*}\left(A \cap\left(U^{N} E_{i}^{c}\right) \quad\left(\because N^{\prime} E_{i} E_{\Sigma}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mu^{*}(A) \geqslant \sum_{1}^{\infty} \mu^{*}\left(A \cap E_{i}\right)+\mu^{*}\left(A \cap\left(\bigcup_{1}^{\infty} E_{i}\right)^{c}\right) \quad \Rightarrow R^{*}(A)=\mu^{*}\left(A \cap\left(\mathcal{H}^{*}\left(\mathcal{U}_{i}\right)\right)\right) \\
& \left.\geqslant \mu^{*}\left(A \cap\left(U_{i} E_{i}\right)\right)+\mu^{*}\left(A \cap\left(U_{i}^{i} E_{i}\right)^{c}\right) \geqslant \mu^{*}(A) \quad \Rightarrow \mu^{*}\left(A \cap \theta_{E} E_{i}\right)\right)_{E_{i}}^{\infty} \in \sum_{i}^{\infty}\left(A \cap E_{i}\right)
\end{aligned}
$$

Remark 4.24. Note, the above shows $\mu^{*}\left(A \cap\left(\cup_{1}^{\infty} E_{i}\right)\right)=\sum_{1}^{\infty} \mu^{*}\left(A \cap E_{i}\right)$.

Definition 4.25. Define the Lebesgue σ-algebra by $\mathcal{L}\left(\mathbb{R}^{d}\right)=\left\{E \mid \lambda^{*}(A)=\lambda^{*}(A \cap E) \cap \lambda^{*}\left(A \cap E^{c}\right) \forall A \subseteq \mathbb{R}^{d}\right\}$.
Definition 4.26. Define the Lebesgue measure by $\underline{\lambda(E)}=\underbrace{\lambda^{*}(E)}$ for all $E \in \mathcal{L}\left(\mathbb{R}^{d}\right)$.
Remark 4.27. By Carathéodory, $\mathcal{L}\left(\mathbb{R}^{d}\right)$ is a σ-algebra, and λ is a measure on \mathcal{L}.
Question 4.28. Is $\mathcal{L}\left(\mathbb{R}^{d}\right)$ non-trivial?

