Definition 3.14. Let Σ be a σ -algebra on X. We say μ is a (positive) measure on (X, Σ) if:

(1) $\mu: \Sigma \to [0, \infty]$ (2) $\mu(\emptyset) = 0$ (3) (Countable additivity): $E_1, E_2, \dots \in \Sigma$ are (countably many) pairwise disjoint sets, then $\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$. Question 3.15. Is the second assumption necessary? Question 3.16. Let $\mu(A) = \text{cardinality of } A$. Is μ a measure? Question 3.17. Fix $x_0 \in X$. Let $\mu(A) = 1$ if $x_0 \in A$, and 0 otherwise. Is μ a measure? Theorem 3.18. There exists a measure λ on $\mathcal{B}(\mathbb{R}^d)$ such that $\lambda(I) = \text{vol}(I)$ for all cuboids I.

- Goal: Define $\int_X f d\mu$ (the Lebesgue integral).
- Idea:
 - \triangleright Say $s: X \to \mathbb{R}$ is such that $s = \sum_{i=1}^{N} a_i \mathbf{1}_{A_i}$, for some $a_i \in \mathbb{R}$, $A_i \in \Sigma$. (Called simple functions.)
 - $\triangleright \text{ Define } \int_X s \, d\mu = \sum_{i=1}^N a_i \mu(A_i).$
- $\triangleright \text{ If } f \geqslant 0, \text{ define } \int_X f \, \overline{d\mu} = \sup_{s \leqslant f} \int_X s \, d\mu.$
- Will do this after constructing the Lebesgue measure.

4. Construction of the Lebesgue Measure 4.1. Lebesgue Outer Measure. Definition 4.1. We say $I \subseteq \mathbb{R}$ is a *cell* if I is a finite interval. Define $\ell(I) = \sup I - \inf I$. Definition 4.2. We say $I \subseteq \mathbb{R}^d$ is a *cell* if it is a product of cells. If $I = I_1 \times \cdots \times I_d$, then define $\ell(I) = \prod_{i=1}^d \ell(I_i)$. Remark 4.3. $\ell(I) = \ell(\mathring{I}) = \ell(I)$. Remark 4.4. $\emptyset = \prod_{i=1}^d (a, a)$, and so $\ell(\emptyset) = 0$. Remark 4.5. For all $\alpha \in \mathbb{R}^d$, $\ell(I) = \ell(I + \alpha)$. Theorem 4.6. There exists a (unique) measure λ on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ such that $\lambda(I) = \ell(I)$ for all cells I.

Question 4.7. *How do you extend* ℓ *to other sets?*

Definition 4.8 (Lebesgue outer measure). Given $A \subseteq \mathbb{R}^d$, define $\lambda^*(A) = \inf_{k \to \infty} \left\{ \sum_{1}^{\infty} \ell(I_k) \mid A \subseteq \bigcup_{1}^{\infty} I_k$, where I_k is a cell $\right\}$.

Remark 4.9. Some authors use m^* instead of λ^* .

Remark 4.10. λ^* is defined on $\mathcal{P}(\mathbb{R}^d)$; but only "well behaved" on a σ -algebra.

Question 4.11. What is $\lambda^*(\emptyset)$? What is $\lambda^*(\mathbb{R}^d)$?

	K	~ F + Co,		$\leq \sum l(I_k)$
	O X	$(A) \leq \tilde{X}(B)$		REI.
1) 16	$A = 0, \dots$			K
2	$\chi(I) = \ell(I)$	× (pl) -	× (T)	
			A A	5

Proposition 4.12. If $E \subseteq F$, then $\lambda^*(E) \leq \lambda^*(F)$. **Proposition 4.13.** If $E_1, E_2, \ldots \subseteq \mathbb{R}^d$, then $\lambda^*(\cup_1^\infty E_i) \leq \sum_1^\infty \lambda^*(E_i)$. \mathbb{F} : $\forall i, \forall \epsilon > 0 \exists dl_s \quad \mathbb{I}_{i,k} \quad \neq \quad \lambda^*(\mathbb{E}_i) \geq \mathbb{E}_i \quad \mathbb{E}_i(\mathbb{I}_{i,k}) - \mathbb{E}_i$ $(E_i \subseteq V I_{ik})$ Clenty U E. $) \leq \sum_{i,k}^{\prime} \left((\overline{I}_{i,k}) \right) \leq \sum_{i=1}^{\prime} \left(\lambda(E_{i}) + E_{i} \right) = \overline{2} \lambda(E_{i}) + E$ ØE`

Proposition 4.14. Let $\underline{A}, \underline{B} \subseteq \mathbb{R}^d$, and suppose d(A, B) > 0. Then $\lambda^*(A \cup B) = \lambda * (A) + \lambda * (B)$.

 $Proof: \text{ Only need to show } \lambda^*(A \cup B) \ge \lambda^*(A) + \lambda^*(B). \text{ If } \lambda^*(A \cup B) = \infty, \text{ we are done, so assume } \lambda^*(A \cup B) < \infty,$

$$\begin{array}{l} \text{Pick} \quad \mathcal{E} > \mathcal{O} \,. \\ \exists \text{ alle } \quad \overline{I_{k}} \neq \text{ AUB} \subseteq \overset{*}{V} I_{k} \quad \mathcal{E} \quad \overset{*}{\lambda} (\text{AUB}) \geqslant \mathbb{Z} l(\overline{I_{k}}) - \mathcal{E} \\ \text{ At} \quad \underbrace{\{\overline{I_{k}}\}}_{k} = \left\{\overline{J_{k}}\right\} \cup \underbrace{\{\overline{J_{k}}\}}_{k} \quad \begin{array}{c} + \quad \overline{J_{k}} \cap A \quad \neq \quad \varphi \\ (\text{Subolinde } \quad \overline{I_{k}} \downarrow \text{ Neasong } + \text{ diam} \quad (\overline{I_{k}}) < \text{ did}_{\overline{E}} \underbrace{(\overline{A})}_{k} \Rightarrow \quad \overline{J_{k}} \cap B \quad = \quad \varphi \quad \overline{J_{k}} \cap B \neq \varphi \\ \overset{*}{\lambda} (A) \leq \mathbb{Z} l(\overline{J_{k}}) \quad \begin{array}{c} \\ \lambda'(B) \leq \mathbb{Z} l(\overline{J_{k}}) \\ \lambda'(B) \leq \mathbb{Z} l(\overline{J_{k}}) \\ \end{array} \right) \quad \begin{array}{c} \\ \end{array} \right\} \quad \begin{array}{c} \\ \end{array}$$

Proposition 4.15. If $I \subseteq \mathbb{R}^d$ is a cell, then $\lambda^*(I) = \ell(I)$. **Lemma 4.16.** If $\{I_k\}$ divide I by hyperplanes, then $\sum \ell(I_k) = \ell(I)$. **Lemma 4.17.** $\lambda^*(A) = \inf\{\sum \ell(I_i) \mid A \subseteq \bigcup I_k, \text{ and } I_k \text{ are all open cells}\}.$ $\text{ If } J_k \supseteq I_k \ \& \ l(J_k) \leq l(I_k) + \leq k \ J_k \ \text{ for } .$ $\geq \mathbb{Z}\left(\left|\overline{J_{k}}\right\rangle \leq \mathbb{Z}\left(\left|\overline{J_{k}}\right\rangle + \mathbb{Z}\right) \leq \mathbb{Z}\left(\left|\overline{J_{k}}\right\rangle + \mathbb{Z}\right)$ OFD

Proof of Proposition 4.15: Suppose first I is closed (hence compact). Pick $\varepsilon > 0$. $\mathsf{K}_{\mathsf{MAS}} \quad \overset{\mathsf{f}}{\lambda}(\mathbf{I}) \leq \mathsf{l}(\mathbf{I}), \quad \mathsf{NTS} \quad \overset{\mathsf{f}}{\lambda}(\mathbf{I}) \geq \mathsf{l}(\mathbf{I}).$ NTS $l(I) = \lambda(I)$ Proce 2>0. From alle $I_k + I = UI_k & \lambda(I) \ge 2l(I_k) - E$ Ve fore abrow. $J(I) \ge Zl(I_k) - E \ge l(I) - E$. $T = \frac{1}{2} \frac{1}{2}$ diade I by hydrodance.