1. Syllabus Overview

- Class website and full syllabus: http://www.math.cmu.edu/~gautam/sj/teaching/2020-21/720-measure
- TA: Lantian Xu <lxu2@andrew.cmu.edu>
- Homework Due: Every Wednesday, before class (on Gradescope)
- Midterm: Fri Oct 9th (90 mins, self proctored, can be taken any time)

• Zoom lectures:

- \triangleright Please enable video. (It helps me pace lectures).
- \triangleright Mute your mic when you're not speaking. Use head phones if possible. Consent to be recorded.
- $\triangleright\,$ If I get disconnected, check your email for instructions.

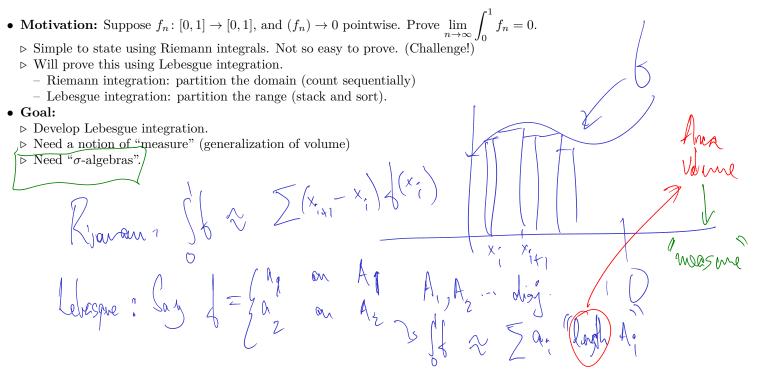
• Homework:

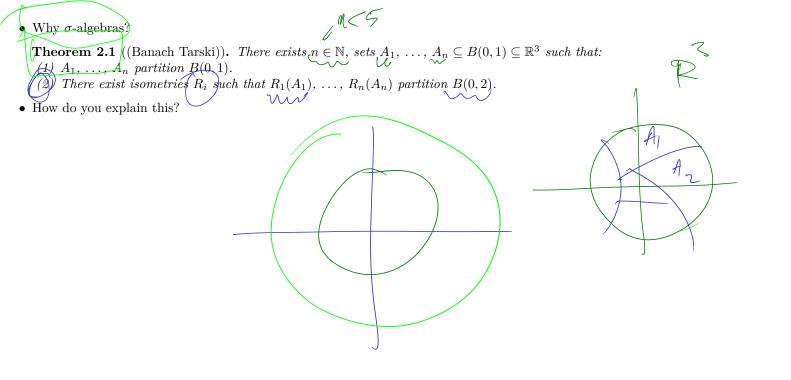
- ▷ Good quality scans please! Use a scanning app, and not simply take photos. (I use Adobe Scan.)
- $\triangleright~20\%$ penalty if turned in within an hour of the deadline. 100% penalty after that.
- $\triangleright~$ Bottom 20% homework is dropped from your grade (personal emergencies, other deadlines, etc.).
- $\triangleright\,$ Collaboration is encouraged. Homework is not a test ensure you learn from doing the homework.
- $\triangleright~$ You must write solutions independently, and can only turn in solutions you fully understand.
- Exams:
 - $\triangleright\,$ Can be taken at any time on the exam day. Open book. Use of internet allowed.
 - ▷ Collaboration is forbidden. You may not seek or receive assistance from other people. (Can search forums; but may not post.)
 - ▷ Self proctored: Zoom call (invite me). Record yourself, and your screen to the cloud.
 - ▷ Share the recording link; also download a copy and upload it to the designated location immediately after turning in your exam.

• Academic Integrity

- \triangleright Zero tolerance for violations (automatic ${\bf R}).$
- $\triangleright\,$ Violations include:
 - Not writing up solutions independently and/or plagiarizing solutions
 - Turning in solutions you do not understand.
 - Seeking, receiving or providing assistance during an exam.
 - Discussing the exam on the exam day (24h). Even if you have finished the exam, others may be taking it.
- ▷ All violations will be reported to the university, and they may impose additional penalties.
- Grading: 40% homework, 20% midterm, 40% final.

2. Sigma Algebras and Measures





Definition 2.2 (σ -algebra). Let X be a set. We say $\Sigma \subseteq \mathcal{P}(X)$ is a σ -algebra on X if: (1) Nonempty: $\emptyset \in \Sigma$ Closed under compliments: $A \in \Sigma \implies A^c \in \Sigma$. EZZDA.EZ A, , A (3) Closed under countable unions: $A_i \in \Sigma \implies \bigcup_{i=1}^{\infty} A_i \in \Sigma$. Demgans Remark 2.3. Any σ -algebra is also closed under countable intersections. i lavo. **Question 2.4.** Is $\mathcal{P}(X)$ is a σ -algebra? Question 2.5. Is $\Sigma \stackrel{\text{def}}{=} \{\emptyset, X\}$ is a σ -algebra? is imf -Question 2.6. Is $\Sigma = \{A \mid |A| < \infty \text{ or } |A^c| < \infty\}$ a σ -algebra? **Question 2.7.** Is $\Sigma = \{A \mid either A \text{ or } A^c \text{ is finite or countable}\}$ a σ -algebra? (finite is contable)

Proposition 2.8. If $\forall \alpha \in \mathcal{A}, \Sigma_{\alpha}$ is <u>a</u> σ -algebra, then so is $\bigcap_{\alpha \in \mathcal{A}} \Sigma_{\alpha}$.

Question 2.13. Is $\mathcal{B}(\mathbb{R}) = \mathcal{P}(\mathbb{R})$?

Definition 2.9. If $\mathcal{E} \subseteq \mathcal{P}(X)$, define $\sigma(\mathcal{E})$ to be the intersection of all σ -algebras containing \mathcal{E} . Remark 2.10. $\sigma(\mathcal{E})$ is the smallest σ -algebra containing \mathcal{E} .

Definition 2.11. Suppose X is a topological space. The Borel σ -algebra on X is defined to be the σ -algebra generated by all open subsets of X. Notation: $\mathcal{B}(X)$.

Question 2.12. Can you get $\mathcal{B}(X)$ by taking all countable unions / intersections of open and closed sets?

 Definition 2.14. Let Σ be a σ -algebra on X. We say μ is a (positive) measure on (X, Σ) if: (1) $\mu: \Sigma \to [0,\infty]$ \rightarrow (2) $\mu(\emptyset) = 0$ (2) $\mu(b) = 0$ (3) (Countable additivity): $E_1, E_2, \dots \in \Sigma$ are (countably many) pairwise disjoint sets, then $\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$. Question 2.15. Is the second assumption necessary? **Question 2.16.** Let $\mu(A) = cardinality of A$. Is μ a measure? **Question 2.17.** Fix $x_0 \in X$. Let $\mu(A) = 1$ if $x_0 \in A$, and 0 otherwise. Is μ a measure? ABAEZ > A CX, W(A) E[0, 0] **Theorem 2.18.** There exists a measure λ on $\mathcal{B}(\mathbb{R}^d)$ such that $\lambda(I) = \operatorname{vol}(I)$ for all cuboids I. $M(E) = \mu(E) + \mu(\phi) \rightarrow \mu(\phi) =$