1. Syllabus Overview

- Class website and full syllabus: http://www.math.cmu.edu/~gautam/sj/teaching/2020-21/720-measure
- TA: Lantian Xu lxu2@andrew.cmu.edu
- Homework Due: Every Wednesday, before class (on Gradescope)
- Midterm: Fri Oct 9th (90 mins, self proctored, can be taken any time)
- Zoom lectures:
\triangleright Please enable video. (It helps me pace lectures).
\triangleright Mute your mic when you're not speaking. Use headphones if possible. Consent to be recorded.
\triangleright If I get disconnected, check your email for instructions.
- Homework:
\triangleright Good quality scans please! Use a scanning app, and not simply take photos. (I use Adobe Scan.)
$\triangleright 20 \%$ penalty if turned in within an hour of the deadline. 100% penalty after that.
\triangleright Bottom 20% homework is dropped from your grade (personal emergencies, other deadlines, etc.).
\triangleright Collaboration is encouraged. Homework is not a test - ensure you learn from doing the homework.
\triangleright You must write solutions independently, and can only turn in solutions you fully understand.
- Exams:
\triangleright Can be taken at any time on the exam day. Open book. Use of internet allowed.
\triangleright Collaboration is forbidden. You may not seek or receive assistance from other people. (Can search forums; but may not post.)
\triangleright Self proctored: Zoom call (invite me). Record yourself, and your screen to the cloud.
\triangleright Share the recording link; also download a copy and upload it to the designated location immediately after turning in your exam.

- Academic Integrity

\triangleright Zero tolerance for violations (automatic \mathbf{R}).
\triangleright Violations include:

- Not writing up solutions independently and/or plagiarizing solutions
- Turning in solutions you do not understand.
- Seeking, receiving or providing assistance during an exam.
- Discussing the exam on the exam day (24h). Even if you have finished the exam, others may be taking it.
\triangleright All violations will be reported to the university, and they may impose additional penalties.
- Grading: 40% homework, 20% midterm, 40% final.

2. Sigma Algebras and Measures

- Motivation: Suppose $f_{n}:[0,1] \rightarrow[0,1]$, and $\left(f_{n}\right) \rightarrow 0$ pointwise. Prove $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}=0$. \triangleright Simple to state using Riemann integrals. Not so easy to prove. (Challenge!)
\triangleright Will prove this using Lebesgue integration.
- Riemann integration: partition the domain (count sequentially)
- Lebesgue integration: partition the range (stack and sort).
- Goal:
\triangleright Develop Lebesgue integration.
\triangleright Need a notion of "measure" (generalization of volume)
\triangleright Need " σ-algebras".

Theorem $2.1\left(\left(\right.\right.$ Banach Tarski)). There exists $n \in \mathbb{N}$, sets $A_{1}, \ldots, \sim_{n} \subseteq B(0,1) \subseteq \mathbb{R}^{3}$ such that:
(1) A_{1}, \ldots, A_{n} partition $B(0,1)$.
((2)) There exist isometries R_{i} such that $R_{1}\left(A_{1}\right), \ldots, R_{n}\left(A_{n}\right)$ partition $B(0,2)$.

- How do you explain this?

Definition 2.2 (σ-algebra). Let X be a set. We say $\Sigma \subseteq \mathcal{P}(X)$ is a σ-algebra on X if:
-(1) Nonempty: $\emptyset \in \Sigma$
\rightarrow (2) Closed under compliments: $A \in \Sigma \Longrightarrow A^{c} \in \Sigma$.
$\rightarrow(3)$ Closed under countable unions: $A_{i} \in \Sigma \Longrightarrow \bigcup_{i=1}^{\infty} A_{i} \in \Sigma$.
Remark 2.3. Any σ-algebra is also closed under countable intersections.
Question 2.4. Is $\mathcal{P}(X)$ is a σ-algebra?

Question 2.5. Is $\Sigma \stackrel{\text { def }}{=}\{\emptyset, X\}$ is a σ-algebra?
Question 2.6. Is $\Sigma=\left\{A| | A \mid<\infty\right.$ or $\left.\left|A^{c}\right|<\infty\right\}$ a σ-algebra? X is
Question 2.7. Is $\Sigma=\left\{\underset{\mathrm{W}}{A \mid \text { either } A}\right.$ or A^{c} is finite or countable $\}$ a σ-algebra?

Proposition 2.8. If $\forall \alpha \in \mathcal{A}, \Sigma_{\alpha}$ is a a-algebra, then so is $\overbrace{\bigcap_{\alpha \in \mathcal{A}} \Sigma_{\alpha}}$. $Y_{\text {es }}$.
Definition 2.9. If $\mathcal{E} \subseteq \mathcal{P}(X)$, define $\sigma(\mathcal{E})$ to be the intersection of all σ-algebras containing \mathcal{E}.
Remark 2.10. $\sigma(\mathcal{E})$ is the smallest σ-algebra containing \mathcal{E}.
Definition 2.11. Suppose X is a topological space. The Bore σ-algebra on X is defined to be the σ-algebra generated by all open subsets of X. Notation: $\mathcal{B}(X)$.
Question 2.12. Can you get $\mathcal{B}(X)$ by taking all countable unions / intersections of open and closed sets?
Question 2.13. Is $\mathcal{B}(\mathbb{R})=\mathcal{P}(\mathbb{R})$?

(1) $\mu: \Sigma \rightarrow[0, \infty]$
$\rightarrow(2) \mu(\emptyset)=0$
(3) (Countable additivity): $E_{1}, E_{2}, \cdots \in \Sigma$ are (countably many) pairwise disjoint sets, then $\mu\left(\cup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)$.

Question 2.15. Is the second assumption necessary?
Question 2.16. Let $\mu(A)=$ cardinality of A. Is μ a measure?
Question 2.17. Fix $x_{0} \in X$. Let $\mu(A)=1$ if $x_{0} \in A$, and 0 otherwise. Is μ a measure?
Theorem 2.18. There exists a measure λ on $\mathcal{B}\left(\mathbb{R}^{d}\right)$ such that $\lambda(I)=\operatorname{vol}(I)$ for all cuboids I.
b

$$
E \in \Sigma
$$

$$
\text { Wat } A \in \Sigma \Rightarrow A \subseteq X, M(A) \in[0,0]
$$

