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Let (X,M, µ) be a measure space with µ(X) = 1.

Definition 1.1. We say T : X → X is measure preserving if µ(T−1(A)) = µ(A)
for all A ∈M. (Sometimes we say µ is an invariant measure of T )

Note that the definition states that µ(T−1A) = µ(A), and not µ(TA) = µ(A).
Of course, if T is bijective the presence of the inverse isn’t relevant. If not, consider
the situation where two disjoint sets A1, A2 are each mapped bijectively to some
set B. Since T (A1) = T (A2) = B, if you had µ(A1) = µ(A2) = µ(B), you
certainly won’t have µ(A1 ∪A2) = µ(B) even though T (A1 ∪A2) = B (in this case
µ(A1∪A2) = 2µ(B)). However, since every point in B has two pre-images (one in A1
and one in A2), what would be natural instead would be if each pre-image ‘counted for
half’; namely µ(A1) = µ(A2) = 1

2µ(B). In this case µ(T−1B) = µ(A1 ∪A2) = µ(B),
which is our definition.

If you’re still not convinced our definition is natural, then next proposition should
convince you.

Proposition 1.2. If T is measure preserving,
∫
X
f dµ =

∫
X
f ◦ T dµ.

Proof. As always, it is enough to check this for simple functions. By linearity, we
can reduce simple functions to indicator functions. Now 1A ◦ T = 1T−1A, hence
µ(T−1A) =

∫
1A◦T and µ(A) =

∫
1A which are equal by definition of invariance. �

Definition 1.3. We say T : X → X is ergodic if whenever T−1A = A, µ(A) = 0
or µ(A) = 1.

Intuitively, ergodic maps are maps which ‘mix’ very well.

Example 1.4. Let X = [0, 1], µ the Lebesgue measure, and T (x) = 2x − [2x] (i.e.
T (x) is the fractional part of 2x). Then T is measure preserving and ergodic.

Theorem 1.5 (Birkhoff1 Ergodic Theorem). Let T : X → X be measure preserving
and ergodic, and f ∈ L1(X). Then almost everywhere

(1.1) lim
n→∞

1
n

n−1∑
i=0

f ◦ T i =
∫
X

f dµ.

Here T i = T ◦T · · ·T i-times, and T 0 is the identity map. The non-technical way
of stating this theorem is that ‘space averages are equal to time averages’, which can
be traced back to an idea of Boltzman: Namely, to compute the average velocity of a
gas, one could compute the velocity of each molecule and then divide by the number

Date: Spring 2009.
1If we replace the assumption f ∈ L1(X) with f ∈ L2(X), there is a short ‘slick’ proof

of (1.1) by Von-Neumann, using elementary Hilbert space techniques. Of course, µ(X) = 1 and
f ∈ L2 =⇒ f ∈ L1, so the Von-Neumann result is a special case of Birkhoff.
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of molecules. This is exactly the right hand side of (1.1). Alternately, one could
make the assumption that over time, the trajectory of one molecule essentially visits
the entire volume occupied by the gas (i.e. the trajectory is ‘equi-distributed’). In
this case, we could compute the average velocity by computing the average velocity
of this one molecule over a long period of time. This is exactly the left hand side
of (1.1). Thus the ergodic theorem states that any measure preserving, ergodic map
has equi-distributed trajectories.

The proof of the theorem follows immediately from the following lemma.

Lemma 1.6. If
∫
X
f < 0, then lim sup 1

n

∑n−1
0 f ◦ T i 6 0. If

∫
X
f > 0, then

lim inf 1
n

∑n−1
0 f ◦ T i > 0.

Proof. Define

Sn = 1
n

n−1∑
0
f ◦ T i, Fn = max

16k6n

k−1∑
0
f ◦ T i and A = {Fn → +∞}.

Note Fn+1 > Fn, thus for all x /∈ A, there exists M such that Fn(x) 6 M for all
n. Hence Sn(x) 6 1

nFn(x) 6 M
n , and so lim supSn(x) 6 0. It remains to show that

µ(A) = 0. Now consider

Fn+1 − Fn ◦ T = max
16k6n+1

k−1∑
0
f ◦ T i − max

26k6n+1

k−1∑
1
f ◦ T i

= f + max
16k6n+1

k−1∑
0
f ◦ T i − max

26k6n+1

k−1∑
0
f ◦ T i

Now if the maximum in the first term occurs at k > 1, then the two maximums are
equal and cancel, giving Fn+1 − Fn ◦ T = f . The maximum occurring at k = 0 is
exactly the same as Fn+1 = f , which is equivalent to

max
26k6n+1

k−1∑
0
f ◦ T i 6 f ⇐⇒ f + Fn ◦ T 6 f ⇐⇒ Fn ◦ T 6 0.

Thus
(1.2) Fn+1 − Fn ◦ T = f −min{0, Fn ◦ T}
which is the key to the proof. Note that (1.2) immediately implies that (Fn+1−Fn◦T )
is decreasing, and on A decreases to f . By the dominated convergence theorem,
lim
∫
A

(Fn+1 − Fn ◦ T )→
∫
A
f .

Next note that A is invariant (i.e. T−1A = A). Thus
∫
A
Fn ◦ T =

∫
A
Fn. This

gives 0 6
∫
A

(Fn+1 − Fn) =
∫
A

(Fn+1 − Fn ◦ T )→
∫
A
f , showing

∫
A
f > 0. Finally

since A is invariant, µ(A) = 0 or µ(A) = 1. If µ(A) = 1, then
∫
A
f =

∫
X
f < 0,

which is impossible. Thus µ(A) = 0, finishing the proof. Now replacing f with −f ,
the inequality for lim inf Sn follows. �

Proof of Theorem 1.5. Let g = f −
∫
X
f − ε. By the lemma,(

lim sup 1
n

n−1∑
0
f ◦ T i

)
−
∫
X

f − ε = lim sup 1
n

n−1∑
0
g ◦ T i 6 0 a.e.

and hence lim sup 1
n

∑n−1
0 f◦Ti 6

∫
X
f+ε almost everywhere. The reverse inequality

for the lim inf follows similarly, finishing the proof. �



ERGODIC THEOREM AND CONTINUED FRACTIONS 3

The Ergodic theorem has numerous consequences and deep applications. One
quick application that follows from Example 1.4 is a special case of the (strong) law
of large numbers!

Problem 1.1. Let Ω = [0, 1] with the Lebesgue measure. Let Xn(x) be the nth digit
in the binary expansion of x.

(1) Show that Xn are independent, identically distributed random variables.
(2) Show that Xn+1 = Xn ◦ T , where T is defined in Example 1.4. Now use the

ergodic theorem to show lim 1
n

∑n
1 Xi = 1

2 almost everywhere.

We conclude with a very surprising result about continued fractions. Recall for
any x ∈ (0, 1], there exists (unique) integers a1(x), a2(x), . . . such that

x =
1

a1(x) +
1

a2(x) +
1

a3(x) + · · ·
We use the notation [a1(x), a2(x), . . . ] to denote the expression on the right (called
the continued fraction). For any n ∈ N, we note that [a1(x), . . . , an(x)] is a
rational number. We define pn(x), qn(x) to be the numerator and denominator
of [a1(x), . . . , an(x)] in reduced terms. It is well known that (pn(x)

qn(x) ) → x, and is
in some sense the best approximating sequence to x by rational numbers. Now
intuitively, if a sequence of rational numbers converges (well) to some real number,
then we expect the denominators to grow exponentially. One question would be to
determine the rate at which the denominators grow. The answer is quite surprising.

Theorem 1.7. For almost every x ∈ (0, 1],

lim
n→∞

ln qn(x)
n

= π2

12 ln 2 .

While we prove this for almost all x, it is quite hard to actually produce one
explicit example of a number x with this property! The proof can be traced down
to an ingenious idea of Gauss, and an application of the ergodic theorem.

Proposition 1.8 (Gauss). Let S(x) = 1
x − [ 1

x ] (i.e. S(x) is the fractional part of
1
x). Let dµ(x) = 1

(1+x) ln 2dλ(x). Then S is measure preserving, and ergodic!

Proof. The clever part is guessing what the invariant measure is. Checking invariance
and ergodicity although long and technical is not too hard, and we leave it to the
interested reader. �

Proof of Theorem 1.7. The reason the map S comes into play is because if x =
[a1, a2, . . . ], then 1

x = a1 + [a2, . . . ], and hence S(x) = [a2, a3, . . . ]. Thus the map
S acts like a shift on the continued fraction expansion of x (which is why we use
S instead of T ). The remainder of the proof shows how one can write ln qn(x)

n in a
form where the ergodic theorem applies. Note

pn−1(Sx)
qn−1(Sx) = [a2(x), . . . an−1(x)] = 1

[a1(x), a2(x), . . . , an(x)] − a1(x)

= qn(x)− pn(x)a1(x)
pn(x) ,
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and since the fraction on the right is in reduced terms, we conclude pn(x) = qn−1(Sx).
Thus

1
qn(x) = p1(Sn−1x)

qn(x) = pn(x)
qn(x)

pn−1(Sx)
qn−1(Sx) · · ·

p1(Sn−1x)
q1(Sn−1x)

since p1(x) = 1 for all x ∈ (0, 1]. Now taking the logarithm and dividing by n gives

ln ◦qn
n

= 1
n

n∑
i=1
− ln ◦pi

qi
◦ Sn−i

The key is to realise that in the previous equation pi

qi
can be ignored!

Lemma 1.9. lim
n→∞

1
n

n∑
i=1
− ln ◦pi

qi
◦ Sn−i = lim

n→∞

1
n

n∑
i=1
− ln ◦Sn−i pointwise.

The proof stems from the fact that for any sequence (bn) → b, the sequence
of averages ( 1

n

∑n−1
0 bi) also converges to b. Now it is easy to check (pi

qi
(x)) → x

uniformly, at an exponential rate which is the heart of the matter. Of course, a few
added technicalities are involved since we have pi

qi
◦ Sn−i instead of pi

qi
, and we leave

the details of this to the interested reader.
Now returning to our proof,

∑n
1 − ln ◦Sn−i =

∑n
1 ln ◦Si. So by the Lemma,

Birkhoff, and Proposition 1.8,

lim
n→∞

ln ◦qn
n

= lim
n→∞

1
n

n∑
i=1
− ln ◦Si =

∫ 1

0
− ln(x) 1

1 + x

dx

ln 2 ,

and it only remains to compute the integral on the right. As it turns out, this
is one of those integrals you can’t do explicitly, so some devious trick is required.
Fortunately Gauss has done the hard work for us. Recall ln(1 +x) = x− x2

2 + x3

3 · · · ,
then integrating by parts gives∫ 1

0
− ln(x) 1

1 + x
dx =

∫ 1

0

ln(1 + x)
x

dx =
∞∑
n=1

∫ 1

0
(−1)n+1x

n−1

n
dx =

∞∑
n=1

(−1)n+1

n2 ,

and it remains to compute the sum on the right. Note
∑ 1

n2 =
∑ 1

(2n)2 + 1
(2n−1)2 =⇒∑ 1

(2n−1)2 = 3
4
∑ 1

n2 . Thus
∑ (−1)n+1

n2 =
∑ 1

(2n−1)2−
∑ 1

(2n)2 = ( 3
4−

1
4 )
∑ 1

n2 , which
(by Gauss) is exactly π2

12 . �


