21-370 Discrete Time Finance: Midterm 2.

2020-11-05

- This is an open book test. You may use your notes, homework solutions, books, and/or online resources (including software) while doing this exam.
- You may not, however, seek or receive assistance from a live human during the exam. This includes in person assistance, instant messaging, and/or posting on online forums / discussion boards. (Searching discussion boards is OK, though.)
- You must record yourself (audio, video and screen) and share it with me as instructed by email.
- Late submissions will not be accepted. Please ensure you allow yourself ample time to scan your exam, otherwise you will get zero credit.
- You have 60 minutes. The exam has a total of 3 questions and 40 points.
- Difficulty wise, Q1 ≤ Q2 ≈ Q3(a) ≤ Q3(b). Depending on your intuition, some of you may feel differently, nevertheless, I suggest looking over the entire exam before starting. Good luck ∵.
- 10 1. Consider the N-period binomial model with parameters u = 2, d = 1/2, r = 1/2, $S_0 = 10$ and N = 4. An American option has intrinsic value $G = (G_0, \ldots, G_N)$, where $G_n = 0$ if $n \leq 1$, and $G_n = \mathbf{1}_{\{5 \leq S_n \leq 20\}}$ for $n \geq 2$. What is the arbitrage free price of this option at time 2 given that the first two coins came up heads? Also determine whether you should exercise this option in this situation (at time 2 given that the first two coins are heads), or wait until the third coin is tossed. Explain why.
- 10 2. Consider the N-period binomial model with 0 < d < 1 + r < u, and let S_n denote the stock price at time n. A European option pays $G = g(S_N)$ at maturity time N, where g is some (deterministic) function. Let Δ_n be the number of shares held at time n in the portfolio required to replicate this option. True or false:

If g is increasing, then for every $n \in \{0, \ldots, N\}$, we must have $\Delta_n \ge 0$.

If true, prove it. If false, find a counter example. HINT: If the arbitrage free price of this option at time n is of the form $V_n = f_n(S_n)$ for some (deterministic) function f_n , then must the functions f_n be increasing?

- 3. Consider infinitely many i.i.d. coin tosses where the probability of tossing heads is $p \in (0, 1/2)$ and the probability of tossing tails is q = 1 p. Let $X_n = 1$ if the n^{th} coin is heads, and $X_n = -1$ otherwise. Given $S_0 \in \mathbb{N}$, and $n \in \mathbb{N}$ define $S_{n+1} = S_n + X_{n+1}$.
- (a) Find $\alpha \in \mathbb{R}$ such that the process $e^{\alpha S_n}$ is a martingale.

10

10

(b) Let $M \in \mathbb{N}$, and suppose $S_0 \in \{1, 2, ..., M - 1\}$. Define $\tau = \min\{n \mid S_n \notin (0, M)\}$. Find $P(S_{\tau} = M)$. You may leave your answer in terms of α , where α is the number you found in the previous part. Even though τ is not bounded one can show that the optional sampling theorem still applies. Feel free to assume it.