8.4. Convergence of the Binomial Model.

(1) Let $r_{N}>-1$, and consider a bank that pays you interest r_{N} every $1 / N$ time units.
(2) Question: Can we choose r_{N} so that this converges as $N \rightarrow \infty$.
(3) Let $C_{\underline{0}}^{N}=1, C_{n+1}^{N}=\left(1+r_{N}\right) C_{n}^{N}$ and $\underline{\underline{C_{t}}}=\lim _{N \rightarrow \infty} C_{\underline{\lfloor N t\rfloor}}^{N}$.

Proposition 8.23. If $r \in \mathbb{R}, r_{N}=r / N$, then $\left(C_{t}\right)=e^{r t}$.
Remark 8.24. Note $\partial_{t} C_{t}=r C_{t}$. The quantity r is known as the continuously compounded interest rate.
Remark 8.25. If the interest rate is a constant r, then the discount factor is simply $D_{t}=1 / C_{t}=e^{-r t}$.
(1) Now consider the N period Binomial model, with parameters $0<\underline{d}_{N}<1+r_{N}<u_{N}$, with stock price denoted by S_{n}^{N}.
(2) Each time step for S^{N} denotes $\underline{1 / N}$ time units in real time. Can we chose $\overline{u_{N}}, d_{N}, r_{N}$ such that $S_{t}=\lim _{N \rightarrow \infty} S_{\underline{\lfloor N t\rfloor}}^{N}$ exists?
(3) Choose $r_{N}=r / N$, where $r \in \mathbb{R}$ is the continuously compounded interest rate.

Theorem 8.26. Let $u, d>0$ and choose

$$
\underline{u_{N}}=1+\frac{r}{N}+\frac{u}{\sqrt{N}}, \quad d_{N}=1+\frac{r}{N}-\frac{d_{i}}{\sqrt{N}}, \quad \widetilde{p}=\frac{d}{u+d}, \quad\left(\tilde{q}=\frac{-u}{u+d}, \quad \sigma^{2}=\tilde{p} u^{2}+\tilde{q} d^{2}\right.
$$

Under the risk neutral measure, the processes $S_{\lfloor N t\rfloor}^{N}$ converge weakly to $S_{t}=S_{0} e^{\left(r-\sigma^{2} / 2\right) t+\sigma W_{t}}$, where W is a Brownian motion. That is, for any bounded continuous function f,

$$
\lim _{N \rightarrow \infty} \tilde{\boldsymbol{E}} f\left(S_{\lfloor N t\rfloor}^{N}\right)=\tilde{\boldsymbol{E}}_{\boldsymbol{\phi}} f\left(S_{t}\right)=\tilde{\boldsymbol{E}} f(\underbrace{S_{0} \exp \left(\left(r-\frac{\sigma^{2}}{2}\right) t+\underline{\sigma} W_{t}\right)})
$$

Remark 8.27. S_{t} above is called a Geometric Brownian motion with mean return rate r. and volatility σ.
Remark 8.28. The fact that we took the limit under the risk neutral measure is the reason the mean return rate r is the same as the interest rate r.
Remark 8.29. In this continuous time market you have the asset (whose price is denoted by S_{t}), and a bank with continuously compounded interest rate r (i.e. discount factor is $D_{t}=e^{-r t}$). You can trade continuously in time, and we are neglecting any transaction costs.

$$
M
$$

Nate : RN araby ism the N period come ans

$$
\begin{aligned}
\tilde{p}_{N}=\frac{1+v_{N}-d_{N}}{a_{N}-d_{N}} & =\frac{1+\frac{\pi}{N}-\left(1+\frac{\pi}{N}-\frac{d}{\sqrt{N}}\right)}{\left(1+\frac{\pi}{N}+\frac{n}{\sqrt{N}}\right)-\left(1+\frac{r}{N}-\frac{d N}{\sqrt{N}}\right)} \\
=\frac{d / \sqrt{N}}{(N+d) / \sqrt{N}} & =\frac{d}{n+d .}
\end{aligned}
$$

$P\{:$

$$
\left.\begin{array}{rl}
\therefore S_{n+1}^{N} & =\left\{\begin{array}{ll}
N_{N}^{N} S_{n}^{N} & \text { will fat } \tilde{q}=\frac{u d}{n+d} \\
1 & S_{n}^{N}
\end{array} \text { whee pat } \tilde{q}=\frac{n}{n+d}\right.
\end{array}\right\} \begin{aligned}
\text { at } Y_{n+1}^{N} & =\ln \left(\frac{S_{n+1}^{N}}{S_{n}^{N}}\right) \Rightarrow S_{n+1}^{N}=S_{n}^{N} \cdot e^{\gamma_{n+1}^{N}} \\
& \Rightarrow S_{n+1}^{N}=S_{n-1}^{N} e^{y_{n+1}^{N}+Y_{n}^{N}} \cdots S_{n}^{N}=S_{0} \cdot e^{\frac{n}{2} I_{k}^{2}}
\end{aligned}
$$

(3) Compute $\mu_{N}=E Y_{\text {dk }}^{N} \stackrel{\text { iid }}{=} E^{N} Y_{1}^{N}$

$$
\text { l } \quad \sigma_{N}^{2}=\operatorname{Var}\left(y_{k}^{N}\right) \stackrel{\text { iod }}{=} \operatorname{Var}\left(Y_{1}^{N}\right) \text {. }
$$

(2) $\mu_{N}: E Y_{k}^{N}=\tilde{\phi} \ln _{N} \mu_{N}+\tilde{\eta} \ln d_{N}$

$$
=\tilde{p} \ln \left(1+\frac{\pi}{N}+\frac{\pi}{\sqrt{N}}\right)+\tilde{r} \ln \left(1+\frac{\pi}{N}-\frac{k}{\sqrt{N}}\right) .
$$

(6) Toglor expand the fin $\ln (1+x)$ i

$$
\ln (1+x)=0+x+\frac{1}{2}(-1) x^{2}+O\left(x^{3}\right)
$$

$$
\ln (1+x) \approx x-\frac{x^{2}}{2}+O\left(x^{3}\right) .
$$

(c) Une in $(x$:

$$
\begin{aligned}
& : \mu_{N}=E Y_{k}^{N}=\tilde{p} \ln \left(1+\frac{\tilde{N}}{N}+\frac{u}{\sqrt{N}}\right)+\tilde{q} \ln \left(1+\frac{r}{N}-\frac{d}{\sqrt{N}}\right) \\
& =\frac{1}{\sqrt{N}}(\tilde{\phi} n-\tilde{q} d)+\frac{1}{N}\left(\tilde{p} r+\tilde{q} r-\frac{1}{2}\left(\tilde{p}^{2}+\tilde{q} d^{2}\right)\right)+O\left(\frac{1}{N^{3}}\right) \\
& =\frac{1}{\sqrt{W}}\left(\frac{d}{n+d} \cdot n-\frac{\pi}{n+d} d\right)+\frac{1}{N}\left(r-\frac{\sigma^{2}}{2}\right)
\end{aligned}
$$

(1) $Y_{\text {an }}$ compld $\nabla_{N}^{2}=V_{N N}\left(Y_{\text {NGK }}^{N}\right)=\frac{r^{2}}{N}+O\left(\frac{1}{N^{3 / 2}}\right)$
(6) SA $\quad X_{n}^{N}=\frac{y_{n}^{N}-\mu_{N}}{\sigma_{N}} \Leftrightarrow y_{n}^{N}=\mu_{N}+\sigma_{N} X_{n}^{N}$

Nole $E X_{n}^{N}=0$ \& $\operatorname{Var}\left(X_{n}^{N}\right)=1$.
(5) $\rightarrow \sum_{1}^{n} y_{k}^{N}=\hbar \sum_{1}^{M} x_{k}+u \mu_{N}$

$$
=\frac{r}{\sqrt{N}} \sum_{1}^{n} X_{k}+\frac{n}{N}\left(r-\frac{r^{2}}{2}\right)+O\left(\frac{1}{N^{3 / 2}}\right)
$$

$$
\begin{aligned}
& \left.+O\left(\frac{1}{\sqrt{n}}\right)\right) \\
& =\sigma W_{t}+t\left(r-\frac{\sigma^{2}}{2}\right) \\
& (2) \Rightarrow \lim _{N \rightarrow \infty} S_{[N t]}^{N}=\lim _{N \rightarrow \infty} S_{0} e^{\frac{L N H t}{\sum 1} X Y_{k}}=S_{0} \operatorname{enp}\left(t\left(T-\frac{\nabla^{2}}{2}\right)+\sigma W_{t}\right) \text { OED }
\end{aligned}
$$

Theorem 8.30. Consider a security that pays $f\left(S_{T}\right)$ at maturity time T. The arbitrage free price of this security at time t is given by

$$
\| \rightarrow \underline{V_{t}}=\frac{1}{\underline{D_{t}}} \underline{\tilde{\boldsymbol{E}}_{t}}\left(\underline{D_{T}} \underline{f\left(S_{T}\right)}\right)=\underline{\underline{\tilde{\boldsymbol{E}}_{t}}\left(e^{-r(T-t)} f\left(S_{T}\right)\right)}
$$

Proof. For the Binomial model we already know $V_{n}^{N}=\frac{1}{D_{n}^{N}} \tilde{\boldsymbol{E}}_{n} D_{\lfloor N T\rfloor}^{N} f\left(S_{\lfloor N T\rfloor}^{N}\right)$. Set $n=\lfloor N t\rfloor$ and send $N \rightarrow \infty$.

$$
(\text { laset time })
$$

(Proof of Theorem 8.26)
Did ablaze

Theorem 8.31 (Black-Scholes formula). In the above market, a European call with maturity T and strike K pays $\left(S_{T}-K\right)^{+}$at time T. The arbitrage free price of this call at time t is $c\left(t, S_{t}\right)$, where

$$
c(t, x)=x N\left(d_{+}(T-t, x)\right)-K e^{-r(T-t)} N\left(d_{-}(T-t, x)\right)
$$

$$
\begin{gathered}
c(t, x)=x N\left(d_{+}(1-t, x)\right)-\quad N(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y \\
\text { where } \quad d_{ \pm}=\frac{1}{\sigma \sqrt{\tau}}\left(\ln \left(\frac{x}{K}\right)+\left(r \pm \frac{\sigma^{2}}{2}\right) \tau\right), \quad N\left(d_{-}(T-t, x)\right)
\end{gathered}
$$

Proof. Let $\tau=T-t$. We know $c(t, S(t))=\tilde{\boldsymbol{E}}_{t} e^{-r \underline{\tau}}\left(S_{T}-K\right)^{+}$. Observe first

$$
\underline{S_{t}}=S_{0} e^{\left(r-\frac{\sigma^{2}}{2}\right) \underline{t}+\sigma W_{t}}, \quad \underline{S_{T}}=S_{0} e^{\left(r-\frac{\sigma^{2}}{2}\right) T+\sigma} \underline{W}_{T}, \quad \Longrightarrow \quad S_{T}=S_{t} e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma\left(W_{T}-W_{t}\right)}
$$

Since $W_{T}-W_{t}$ is independent of \mathcal{F}_{t}, and S_{t} is \mathcal{F}_{t} measurable, by the independence lemma,

$$
c\left(t, S_{t}\right)=\tilde{\boldsymbol{E}}_{t} e^{-r \tau}(\underbrace{=}_{\underline{L} e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma\left(W_{T}-W_{t}\right)}}-K)^{+}=\int_{\mathbb{R}} e^{-r \tau}\left(S_{t} e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \underline{\sqrt{\tau}} \underline{y}}-K\right)+e^{-y^{2} / 2} \frac{d y}{\sqrt{2 \pi}} \cdot{ }_{\epsilon}
$$

Now set $S_{t}=x$,

$$
d_{ \pm}(\tau, x) \stackrel{\text { def }}{=} \frac{1}{\sigma \sqrt{\tau}}\left(\ln \left(\frac{x}{K}\right)+\left(r \pm \frac{\sigma^{2}}{2}\right) \tau\right), \quad N(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y=\frac{1}{\sqrt{2 \pi}} \int_{-x}^{\infty} e^{-y^{2} / 2} d y
$$

and observe

$$
\begin{aligned}
c(t, x) & =\frac{1}{\sqrt{2 \pi}} \int_{-d_{-}}^{\infty} x \exp \left(\frac{-\sigma^{2} \tau}{2}+\sigma \sqrt{\tau} y-\frac{y^{2}}{2}\right) d y-e^{-r \tau} K N\left(d_{-}\right) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-d_{-}}^{\infty} x \exp \left(\frac{-(y-\sigma \sqrt{\tau})^{2}}{2}\right) d y-e^{-r \tau} K N\left(d_{-}\right)=x N\left(d_{+}\right)-e^{-r \tau} K N\left(d_{-}\right)
\end{aligned}
$$

$$
\begin{aligned}
& W_{T}-W_{t} \sim N(0, T-t) \quad W_{T}-W_{t}=\sqrt{\tau} \cdot\left(\frac{W_{T}-W_{t}}{\sqrt{\tau}}\right) \\
& \Rightarrow \frac{W_{T}-W_{t}}{\sqrt{T-t}} \sim N(0,1)
\end{aligned}
$$

(1)Please fill FCE's 75% restond vate before fimenl \longrightarrow Gaudes Earily

