Last time: $W_{t} = \lim_{N \to \infty} W_{N+1}^{N} \in Brown motion.$ $N \to \infty$ [Nt] $E_{X_{k}}=D$, $E_{X_{k}}=1$, $-lim_{N\to\infty}$ J_{N} Z_{K} . X_{k} ->iid. J_{N} J_{N} J_{N} J_{N} J_{N}

Definition 8.18. We say a random variable Y is \mathcal{F}_t measurable if $Y = \lim_{n \to \infty} f_n(W_{t_1}, \ldots, W_{t_n})$ where $t_i \leq t$ for all i. **Definition 8.19.** If $Y = f(W_{t_1}, \dots, W_{t_n})$ for some function f and $0 \leq t_1 \cdots < t_n$, define $E_t Y = \lim_{N \to \infty} \tilde{E}_{\lfloor N t \rfloor} f(W_{\lfloor N t_1 \rfloor}^N, \dots, W_{\lfloor N t_n \rfloor}^N)$ Remark 8.20. $E_t f(W_T) = u(t, W_t)$, where u is the function in Lemma 8.16. Remark 8.21. The operator E_t satisfies the same properties as E_n (e.g. $E_t(XY) = XE_tY$ if X is \mathcal{F}_t measurable, independence lemma, etc.) These will be developed systematically in continuous time finance. W, Son, Xen etc. **Proposition 8.22.** W is a martingale. EX= conditional exp of X given Fr (int time) [Nt] $= E(\lambda | F)$ Et has the same propulses as En in the dise (teir) () X is \mathcal{E}_{f} mean $\rightarrow \mathcal{E}_{f}(X) = f(X)$

Def: We cay
$$M$$
 is a mg (cts time) if M is adapted
and $E_s M_t = M_s$ $\forall t \ge s$.
(Note: dise fine: by town frop 2 ind, $E_m M_{mn} = M_m \forall m$
 $\iff E_m M_M = M_m \forall m \gg m$)

 $\frac{Pratio}{P}$ W is a mg. P_{f} : WTS $E_{s}W_{t} = W_{s}$ $\forall t \ge s$.

Note: $E_s W_t = E_s (W_t - W_s + W_s)$ Triak # | fr BM

 $= E_s(W_t - W_c) + E_c W_s$

 $= E(W_{t} - W_{s}) +$ W

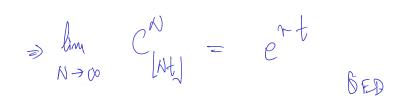
 $= \bigcirc + W_{g} = W_{g}$

 $\begin{pmatrix} \cdots & W_{t} - W_{c} & \text{is indef} \\ & \mathcal{W}_{t} - W_{s} & \mathcal{W}(\mathcal{O}, t - s) \end{pmatrix}$ (" We is Es meas)

QED.

8.4. Convergence of the Binomial Model.

(1) Let $(r_N) > -1$, and consider a bank that pays you interest r_N every 1/N time units. (2) Question: Can we choose r_N so that this converges as $N \to \infty$. (3) Let $C_0^N = 1$, $C_{n+1}^N = (1+r_N)C_n^N$ and $C_t = \lim_{N \to \infty} C_{\lfloor Nt \rfloor}^N$. **Proposition 8.23.** If $r \in \mathbb{R}$, $\underline{r}_N = \underline{r}/\underline{N}$, then $\underline{C}_t = \underline{\underline{e}^{rt}}$. Remark 8.24. Note $\partial_t C_t = r C_t$. The quantity r is known as the continuously compounded interest rate \downarrow Remark 8.25. If the interest rate is a constant r, then the discount factor is simply $D_t = 1/C_t = e^{-rt}$. $\gamma_{N} = \frac{T}{N} + CR$, $C_{N}^{N} = (1 + \frac{T}{N}) - (1 + \frac{T}{N})$ $\Rightarrow C_{N \neq 1}^{N} = \left(1 + \frac{T}{N}\right)^{N \neq 1} = \left(1 + \frac{T}{N}\right)^{N} = \left(1 + \frac{T}{N}\right)^{N} = \left(1 + \frac{T}{N}\right)^{N}$ Note lim $(1 + \frac{\pi}{N}) = e^{\pi} 2 \lim_{n \to \infty} \frac{|Nt|}{N}$



(1) Now consider the <u>N</u> period Binomial model, with parameters $0 < d_N < 1 + r_N < u_N$, with stock price denoted by S_n^N . Each time step for S^N denotes 1/N time units in real time. Can we chose $u_N(d_N)(r_N)$ such that $S_t = \lim_{N \to \infty} S^N_{\lfloor Nt \rfloor}$ exists? (3) Choose $r_N = r/N$, where $r \in \mathbb{R}$ is the continuously compounded interest rate. **Theorem 8.26.** Let u, d > 0 and choose $u_N = 1 + \frac{r}{N} + \frac{u}{\sqrt{N}} |, \quad d_N = 1 + \frac{r}{N} - \frac{d}{\sqrt{N}} |, \quad \tilde{p} = \frac{d}{u+d}, \quad \tilde{q} = \frac{u}{u+d}, \quad \tilde{\sigma}^2 = \tilde{p}u^2 + \tilde{q}d^2.$ Under the risk neutral measure, the processes $S_{\lfloor Nt \rfloor}^N$ converge weakly to $S_t = S_0 e^{(r-\sigma^2/2)t+\sigma W_t}$, where W is a Brownian motion. That is, for any bounded continuous function fThat is, for any bounded continuous function f, Remark 8.27. S_t above is called a Geometric Brownian motion with mean return rate r, and volatility σ .

Remark 8.28. The fact that we took the limit under the risk neutral measure is the reason the mean return rate r is the same as the interest rate r.

Remark 8.29. In this continuous time market you have the asset (whose price is denoted by S_t), and a bank with *continuously* compounded interest rate r (i.e. discount factor is $D_t = e^{-rt}$). You can trade continuously in time, and we are neglecting any transaction costs.

$$R.W. Prods \quad \widetilde{P}_{W} = \frac{1+T_{N}-d_{N}}{W_{N}-d_{N}} = \frac{1+\frac{T_{N}}{N}-\left(1+\frac{T_{N}}{N}-\frac{d}{W}\right)}{\left(1+\frac{T_{N}}{N}+\frac{M}{W}\right)-\left(1+\frac{T_{N}}{N}-\frac{d}{W}\right)}$$
$$= \frac{d/M}{(u+d)/M} = \left(\frac{1}{u+d}\right)$$

Theorem 8.30. Consider a security that pays $f(S_T)$ at maturity time T. The arbitrage free price of this security at time t is given by

$$V_t = \frac{1}{D_t} \tilde{E}_t \left(D_T f(S_T) \right) = \tilde{E}_t \left(e^{-r(T-t)} f(S_T) \right)$$

Proof. For the Binomial model we already know $V_n^N = \frac{1}{D_n^N} \tilde{E}_n D_{\lfloor NT \rfloor}^N f(S_{\lfloor NT \rfloor}^N)$. Set $n = \lfloor Nt \rfloor$ and send $N \to \infty$.