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8.3. Brownian motion.

———
e Suppose now X, X, ... are i.i.d. R valued random variables.
e Use P to denote the probability measure, and E E to denote %he associated expectation / conditional expectation.

2

o Assume w and EX2 = 1. Cg —_ XI&) + ﬂ\
Theorem 8.10. Let Wé L S = \le Xyi. Then impy_ o WLNtJ exists almost surely CQML AM}? — IR
Theorem 8.11. (1) The functzon@—) Wt s continuous glmt surely, and Wy = 0.

fO=1ty <ty <---t,, then Wy, — th Wt2 Wiy ooy, Wy, — Wy, | are zndependent andLVI‘/ti — Wy, ~N(0,t; — ti,l).ﬁ)

\_/ . . ‘ - — 1

Remark 8.12. Typically one changes the probability space to ensure the function ¢ —

is con' inuous

ownian motion.

Definition 8.13. The process W above is called a standard (one dimensional)
—— — -— —_—

it W = b o
bS] t —/Qlew@ﬂ



The full proof of Theorems 8.10 and 8.11 are technical and beyond the scope of this course. However, we can prove a weaker
result here:

Proposition 8.14. Wr ~ N(0,T).

Remark 8.15. The above is simply the central limit theorem (which we never proved). We will prove it here. Our proof can also be
modified to prove that W has independent normally distributed increments.



Lemma 8.16. Let f be a bounded continuous function, fir T > 0. By the Markov property we know EN,_Lf(WgVTJ) = g, (W) for
- —

some function gn. Set u(t,r) = lImn_ o0 g n¢j(z). Then dpu + $0%u =0_and u(T,z) = f(z).
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