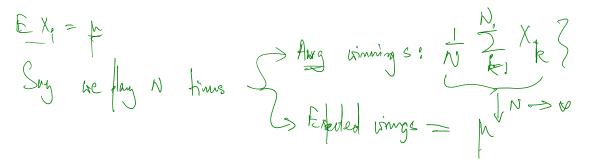
WO have of have #'s. X_{1}, X_{2}, X_{3} $\begin{pmatrix} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$

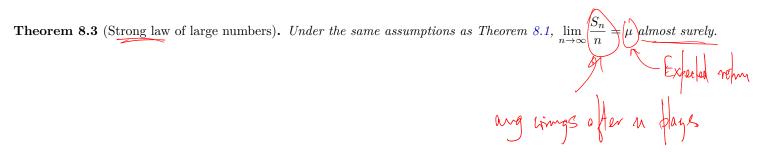


8.1. Law of large numbers. Now consider infinitely many i.i.d. random variables $X_{\underline{1}, X_{2}, \ldots}$. Theorem 8.1 (Weak law of large numbers). Suppose $\underline{EX_{n}} = \underline{\mu}$ and $\operatorname{Var} X_{n} = \underline{\sigma}^{2} < \infty$, and let $S_{n} = \sum_{1}^{n} X_{k}$. Then $\operatorname{Var}(\underline{S_{n}/n}) \to 0$, and hence for any $\underline{\varepsilon} > 0$, $\lim_{n \to \infty} P\left(\left|\frac{S_{n}}{n} - \underline{\mu}\right| > \varepsilon\right) = 0$. Lemma 8.2 (Chebychev's inequality). For any $\underline{\varepsilon} > 0$, $P(X > \varepsilon) \leq \frac{1}{\varepsilon} \underline{E}|X|$.

$$\begin{array}{rcl} & \text{Node} & \varepsilon & 1 \\ & & & & \\ \end{array} \end{array} \xrightarrow{\mathcal{E}} & \mathcal{E} & 1 \\ \Rightarrow & \mathcal{E} & \mathcal{E} & 1 \\ & & & \\ \end{array} \xrightarrow{\mathcal{E}} & \mathcal{E} & 1 \\ & & & \\ \end{array} \xrightarrow{\mathcal{E}} & \mathcal{E} & 1 \\ \end{array} \xrightarrow{\mathcal{E}} & \mathcal{E} & |X| \\ \Rightarrow & \mathcal{P}(X > \varepsilon) & \leq & \frac{1}{\varepsilon} & \mathcal{E} & |X| \\ \end{array}$$

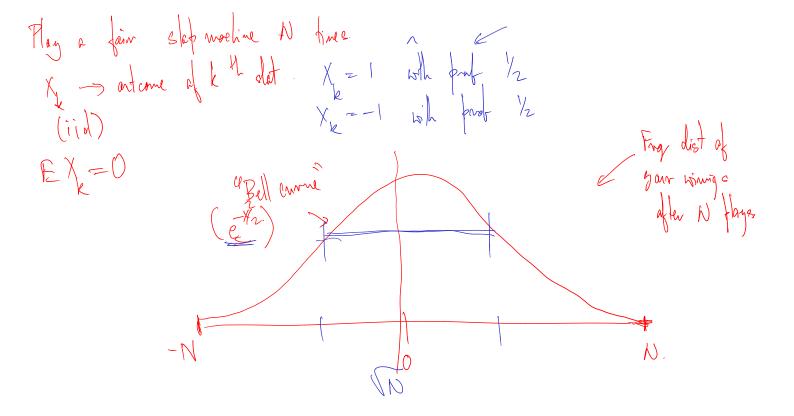
Proof of Theorem 8.1
$$E X_{M} = \mu$$
, $E (X_{NN} - \mu)^{2} = \tau^{2}$. X_{M} 's one ind.
 $C = \sum_{i=1}^{M} X_{ki}$
 $P f: Note V_{N} \left(\frac{S_{M}}{N}\right) \longrightarrow 0$.
 $P f: Note V_{N} \left(\frac{S_{M}}{N}\right) = \frac{1}{N^{2}} V_{0N} \left(S_{M}\right) = \frac{1}{N^{2}} \sum_{i=1}^{M} V_{0N} (X_{ki}) = \frac{\tau^{2}}{N}$
 $S V_{0M} \left(\frac{S_{M}}{N}\right) = \frac{\tau^{2}}{N} \xrightarrow{M \rightarrow 0} 0$
 $\left(\stackrel{\circ}{\longrightarrow} X k Y_{0M} e indep V_{0N} (X + Y) = V_{0N} (X + Y) = V_{0N} (X + Y) + V_{0N} (Y) \right)$
 $(2) NTS X 2 > 0, P \left(\left| \frac{S_{M}}{N} - \mu \right| > 2 \right) \xrightarrow{M \rightarrow 0} 0$

 $\mathbb{R}: \mathbb{P}\left(\left|\frac{\mathbb{S}_{M}}{\mathbb{N}} - |\mathbf{h}| > \varepsilon\right) = \mathbb{P}\left(\left(\frac{\mathbb{S}_{M}}{\mathbb{N}} - |\mathbf{h}| > \varepsilon\right)\right)$ Chebychev $\frac{1}{\epsilon^2} E\left(\frac{S_m}{m} - \mu\right)^2$ $= V_{av} \left(\frac{S_m}{m} \right)$ $=\frac{1}{\epsilon^2}\cdot\frac{r^2}{n}\longrightarrow 0$ DET RED



(Pf is horder)

l



8.2. Central limit theorem.

Theorem 8.4. Let X_n be a sequence of \mathbb{R}^d valued, *i.i.d.* andom variables be such that $\mathbf{E}X_n^i = \mathbf{A}_i$ and $\underline{\operatorname{cov}(X_n^i, X_n^j)} = \underline{\Sigma}_{i,j}$. Let $S_N = \sum_{1}^{N} X_n$. Then $(S_N \not A_i) / \sqrt{N}$ converges weakly to $\mathcal{N}(\mathbf{p}, \Sigma)$.

Definition 8.5. We say a sequence of random variables Y_n converges weakly to a random variable Z if $Ef(Y_n) \to Ef(Z)$ for every bounded continuous function f. **Definition 8.6.** Let $\mu \in \mathbb{R}^d$, and Σ be a $d \times d$ covariance matrix (positive semi-definite, symmetric). $(\Sigma \to \mathcal{F} \times \mathcal{C} \to \mathcal{F})$

- (1) $\underline{\mathcal{N}}(\underline{\mu}, \underline{\Sigma})$ denotes a normally distributed random variable with mean $\underline{\mu}$ and covariance matrix $\underline{\Sigma}$.
- (2) When Σ is invertible, the probability density function of $\mathcal{N}(\mu, \Sigma)$ is $\frac{1}{(2\pi(\det(\Sigma))^{2/2}} \exp\left(-\frac{1}{2}(x-\mu)\cdot\Sigma^{-1}(x-\mu)\right)$
- (3) When d = 1, $\Sigma = (\sigma^2)$ the PDF of $N(\underline{\mu}, \sigma^2)$ is $\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\underline{\mu})^2/(2\sigma^2)}$.

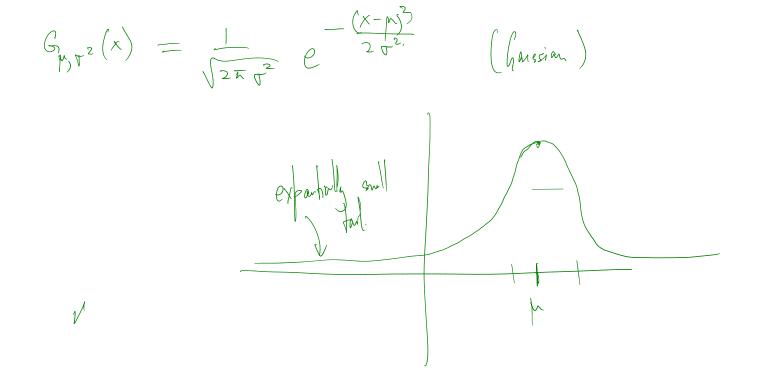
(4) When $\mu = 0$, $\sigma = 1$, $\mathcal{N}(0, 1)$ is called the *standard normal*, and its PDF is the *Gaussian* $G(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

Definition 8.7. We say p is the probability density function (PDF) of a *d*-dimensional random variable X if $P(X \in A) = \int_A p(x) dx$ for all cubes $A \subseteq \mathbb{R}^d$.

Remark 8.8. Equivalently, p is the PDF of X if $Ef(X) = \int_{\mathbb{R}^d} f(x)p(x) dx$ for every bounded continuous function f.

Remark 8.9. We will prove Theorem 8.4 during the course of the construction of Brownian motion.

S.LLL $: E X_{n} = D$ $\sum_{M} \longrightarrow \mu = 0 \quad a \cdot S.$ $\xrightarrow{\phi_{\text{heakly}}} N(0, \overline{2})$ CLT ; $EX_{M}=0$; IN Normily dist RV. $h_{1} \rightarrow 2$ weakly if $E_{f}(h_{1}) \rightarrow E_{f}(2) \neq [dd] ds$ Normily dist KV. $h_{2} \rightarrow E_{f}(2) \neq [dd] ds$ Normily dist KV. $h_{2} \rightarrow E_{f}(2) \neq [dd] ds$ Normily dist KV. (f) for $[ct_s] RVS$, $\lim_{M \to \infty} P(Y_M \in A) = P(Z \in A)$ (FACR)



X is a R valuel RV. A is a K value KV. f is the PDF of X if $\forall a, ber, P(xe(a,b)) = \int f(x) dx$

8.3. Brownian motion.

- Suppose now X_1, X_2, \ldots are i.i.d. \mathbb{R} valued random variables.
- Use \$\tilde{P}\$ to denote the probability measure, and \$\tilde{E}\$, \$\tilde{E}\$_n\$ to denote the associated expectation / conditional expectation.
 Assume \$\tilde{E}X_n = 0\$, and \$\tilde{E}X_n^2 = 1\$.

Theorem 8.10. Let $W_n^N = \frac{1}{\sqrt{N}} S_n = \frac{1}{\sqrt{N}} \sum_{1}^n X_k$. Then $\lim_{N \to \infty} W_{\lfloor Nt \rfloor}^N$ exists almost surely.

Theorem 8.11. (1) The function $t \mapsto W_t$ is continuous almost surely, and $W_0 = 0$. (2) If $0 = t_0 < t_1 < \cdots t_n$, then $W_{t_1} - W_{t_0}$, $W_{t_2} - W_{t_1}$, \ldots , $W_{t_n} - W_{t_{n-1}}$ are independent and $W_{t_i} - W_{t_{i-1}} \sim \mathcal{N}(0, t_i - t_{i-1})$.

Remark 8.12. Typically one changes the probability space to ensure the function $t \mapsto W_t$ is continuous surely.

Definition 8.13. The process W above is called a standard (one dimensional) Brownian motion.