



Salme for the RWM (time 1) Want $\widetilde{f}(1)$, $\widetilde{f}(2)$, $\widetilde{f}(3)$ $\rightarrow 0$ $\widetilde{E}(\underline{S}_{1}) = S_{0}'$ $\tilde{f}(\tilde{i}) = \tilde{R}N \text{ prob that he finet die volls <math>\tilde{i}$. $\tilde{f}(\tilde{i}) = \tilde{R}N \text{ prob that he finet die volls <math>\tilde{i}$. $\tilde{f}(\tilde{i}) = \tilde{R}N \text{ prob that he finet die volls <math>\tilde{i}$. $\tilde{f}(\tilde{i}) = \tilde{R}N \text{ prob that he finet die volls <math>\tilde{i}$. $\tilde{f}(\tilde{i}) = \tilde{R}N \text{ prob that he finet die volls <math>\tilde{i}$. $\tilde{f}(\tilde{i}) = \tilde{R}N \text{ prob that he finet die volls <math>\tilde{i}$. $\tilde{f}(\tilde{i}) = \tilde{R}N \text{ prob that he finet die volls <math>\tilde{i}$. $\tilde{f}(\tilde{i}) = \tilde{R}N \text{ prob that he finet die volls <math>\tilde{i}$. $\tilde{f}(\tilde{i}) = \tilde{R}N \text{ prob that he finet die volls <math>\tilde{i}$. $\tilde{f}(\tilde{i}) = \tilde{R}N \text{ prob that he finet die volls <math>\tilde{i}$. $= \sum_{i=1}^{3} \widehat{\beta}(i) S_{i}^{\dagger}(i) = (1+r) S_{0}^{\dagger}$ $\begin{array}{c} (2) \end{array} = \begin{array}{c} (1+1) \\ (2) \end{array} = \begin{array}{c} (1+1) \\ (2) \end{array} \\ (2) \end{array} = \begin{array}{c} (1+1) \\ (2) \end{array} \\ (2) \end{array} \\ (2) \end{array} = \begin{array}{c} (1+1) \\ (2) \end{array} \\ (2) \end{array} \\ (2) \end{array}$ $(3) W_{aut} (i) = 1 \quad (k \not\in f(i) > 0 \quad \forall i)$

Let
$$A = \begin{pmatrix} c & u' & -s \\ c & u^2 & -s \end{pmatrix}$$

Q: When does $A \begin{pmatrix} f \\ f \end{pmatrix} = \begin{pmatrix} 1+v \\ 1+v \end{pmatrix}$ have a wige sol?
det $(A) \neq 0 \Rightarrow$ wigne sol!
Also need to receive $\tilde{f}(i) \notin 0 \forall i$
hiven h^3 , Can explicitly complete $\tilde{A}^{\dagger}(irr) \land chuck \tilde{f}(i) > 0 \forall i$
 $\Rightarrow (complete \& control integration)$
 $\Rightarrow (complete \& control integration)$

Where then one puriod:
Note
$$S_{n+1}^{i} = S_{n}^{i} Z_{n+1}^{i}$$

Note $S_{n+1}^{i} = S_{n}^{i} Z_{n+1}^{i}$
Choose the RNM with ind die valle.
Want $\tilde{E}_{n}(S_{n+1}^{i}) = S_{n}^{i}$
Note : $\tilde{E}_{n}(S_{n}^{i} Z_{n+1}^{i}) = S_{n}^{i} \tilde{E}_{n}(Z_{n+1}^{i})$

> Nad
$$\widetilde{E}_{n}(\widetilde{Z}_{n+1}) = 1+\tau$$
 \widetilde{Y}_{i}
id die ordlo (RNM) (=) $\widetilde{E} Z_{n+1}^{i} = 1+\tau$
 $\operatorname{let} \widetilde{F}_{n+1}(j) = RN$ prob that the (n+1)th die ordle j.
 $\widetilde{P} \widetilde{E} Z_{n+1}^{i} = \frac{3}{2} \widetilde{F}_{n+1}(j) \widetilde{u}(j)$
 $\widetilde{S}_{and} \operatorname{egn}_{i}^{i} \operatorname{ae} \operatorname{before} \mathscr{L}$ solve ac before $\frac{1}{4}$.

8. Black-Scholes Formula

- (1) Suppose now we can trade *continuously in time*.
- (2) Consider a market with a bank and a stock, whose spot price at time <u>t</u> is denoted by S_t .
- (3) The continuously compounded interest rate is r (i.e. money in the bank grows like $\partial_t C(t) = rC(t)$.
- (4) Assume liquidity, neglect transaction costs (frictionless), and the borrowing/lending rates are the same.
- (5) In the *Black-Scholes* setting, we model the stock prices by a *Geometric Brownian motion* with parameters α (the mean return rate) and $\hat{\sigma}$)(the volatility).

_((4)=((0))

(6) The price at time t of a European call with maturity \underline{T} and strike \underline{K} is given by

$$\begin{aligned} \chi_{\pm} & \text{cot} \quad \text{and} \quad \chi_{\pm}(\tau, \underline{x}) = x N (d_{\pm}(T - t, \underline{x})) - K e^{-r(T - t)} N (d_{\pm}(T - t, x)), \\ (\overline{\tau_{\pm}} - \overline{\tau_{\pm}}) & \text{where} \quad d_{\pm} = \frac{1}{\sigma \sqrt{\tau}} \left(\ln \left(\frac{x}{K} \right) + \left(r \pm \frac{\sigma^2}{2} \right) \tau \right), \quad N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy. \\ (7) \text{ We will derive this as the limit of the Binomial model as } N \to \infty. \end{aligned}$$