lace time:

\rightarrow cenvoltons fo this malt to he art free.
\rightarrow Newer complete!
 $S_{n+1}^{i}=S_{n}^{i} Z_{n+1 ;}^{i}$. Find conditions when this market is complete and arbitrage free.

$F T A P 2 \Rightarrow$ Vimpue RNM complete \& ant fore.

Sane for the RWM (time 1)

H(0) $2(2) \Leftrightarrow(1+\tau) S_{q}^{j}=\sum_{i=1}^{3} \tilde{p}(i) S_{1}^{j}(i)=\sum_{i=1}^{3} \tilde{p}(i) u^{j}(i) \oiint_{\phi}^{j}(f o j=12,2)$ \Rightarrow Equtas ane $\tilde{\phi}(1)+\tilde{\phi}(2)+\tilde{\phi}(\xi)=1$

$$
\begin{align*}
& \tilde{\phi}(1) u^{\prime}(1)+\tilde{p}(2) u^{\prime}(2)+\tilde{\phi}(3) u^{\prime}(3)=1+\tau \tag{2}\\
& \tilde{\phi}(1) u^{2}(1)+\tilde{\phi}(2) u^{2}(2)+\tilde{\phi}(3) u^{2}(3)=1+\tau \tag{3}\\
\Leftrightarrow & \left(\begin{array}{c}
1 \\
\vdots \\
u^{2}
\end{array}\right)\left(\begin{array}{l}
\tilde{\phi}(1) \\
\tilde{p}(x) \\
\tilde{\phi}(3)
\end{array}\right)=\left(\begin{array}{c}
1 \\
1+r \\
1+\tau
\end{array}\right)
\end{align*}
$$

Let $A=\left(\begin{array}{lll}1 & 1 & \\ \longleftarrow & u^{\prime} & \\ \leftarrow & u^{2} & \longrightarrow\end{array}\right)$
Q: Whar does $A\binom{\hat{\phi}}{\dot{\jmath}}=\left(\begin{array}{c}1 \\ 1+r \\ 1+r\end{array}\right)$ hane a wige sat?
$\operatorname{det}(A) \neq 0 \Rightarrow$ unque sal!
Alos med to anewame $p(i) \Leftrightarrow 0>0 \quad \forall i$

(2) Mone then one pariod:

Nale $S_{n+1}^{i}=S_{n}^{i} \underbrace{z_{n+1}^{i}}_{\pi}$ anly deperode or the $(n+1)^{\text {th }}$ bie vod.
Chose the RWM with iid die ralls.
Waut $\tilde{E}_{n}\left(\frac{S_{n+1}^{i}}{1+\tau}\right)=S_{0}^{i}$
Nole: $\left.\tilde{E}_{n}\left(\delta_{n}^{i} Z_{n+1}^{i}\right)=S_{n}^{i} \tilde{E}_{n}\left(z_{n+1}^{i}\right)\right]$
\Rightarrow Nead $\tilde{E}_{n}\left(Z_{n+1}^{i}\right)=1+r \quad \forall i$
iid die andls(RNM) $\Leftrightarrow \tilde{E} Z_{n+1}^{i}=1+r$
Lat $\tilde{\phi_{n+1}}(j)=$ RN prob that the $(n+1)^{\text {th }}$ die andls j.

$$
\Rightarrow \tilde{E} z_{n+1}^{i}=\sum_{j=1}^{3} \tilde{\phi}_{n+1}(j){ }^{i}(j)
$$

Sane equ's ae feboure \& salve as lefoee!

8. Black-Scholes Formula

(1) Suppose now we can trade continuously in time.
(2) Consider a market with bank and a stock whose \quad _($(t)=($
(3) The continuously compounded interest rate is r (i.e. money in the bank grows like $\partial_{t} C(t)=r=C(t)$.
(4) Assume liquidity, neglect transaction costs (frictionless), and the borrowing/lending rates are the same.
(5) In the Black-Scholes setting, we model the stock prices by a Geometric Brownian motion with parameters α (the mean return rate) and (б)(the volatility).

$$
\begin{aligned}
& \text { (6) The price at time } t \text { of a European call with maturity } \underline{\underline{T}} \text { and strike } K \text { is given by } \\
& x=\text { spoat price of stock } \quad \underline{c}(t, x)=x N\left(d_{+}(\underline{T-t}, x)\right)-K e^{-r\left(\underline{T-t)} N\left(d_{-}(T-t, x)\right),\right.} \\
& (\tau=T-t) \quad \text { where } \quad d_{ \pm}=\frac{1}{\sigma \sqrt{\tau}}\left(\ln \left(\frac{x}{K}\right)+\left(r \pm \frac{\sigma^{2}}{2}\right) \tau\right), \quad N(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y .
\end{aligned}
$$

(7) We will derive this as the limit of the Binomial model as $N \rightarrow \infty$.
$N=C D F$ of the Nomal dist.

