7.4. Examples and Consequences.

Proposition 7.14. Suppose the market model Section 7.1 is complete and arbitrage free, and let \tilde{P} be the unique risk neutral measure. If $D_n X_n$ is a \tilde{P} martingale, then X_n must be the wealth of a self financing portfolio.

Remark 7.15. We've already seen in Lemma 7.5 that if a (not necessarily unique) risk neutral measure exists, then the discounted wealth of any self financing portfolio must be a martingale under it.

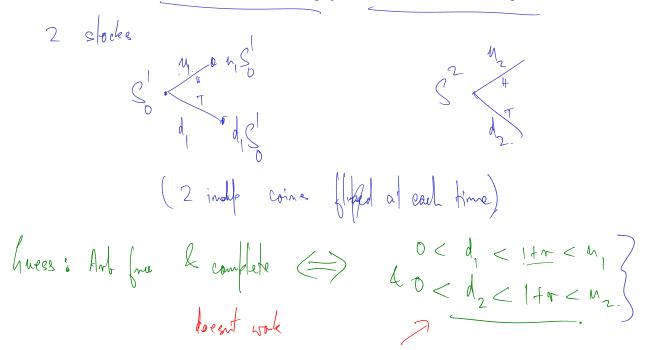
Remark 7.16. All pricing results/formulae we derived for the Binomial model that only relied on the analog of Proposition 7.14 will hold in complete arbitrage free markets.

SPf: Assume Dn Kn is a P mg (i. En (Dn+1 Xn+1) = Dn Xn). Revirder : D D = $\frac{1}{C^{\circ}}$ ($S_{M} \rightarrow B_{0mk}$ proves) € Sey In → trady start. (Rolapted) $\Delta_{M} = \left(\begin{array}{c} \Delta_{n} \\ \end{array} \right), \begin{array}{c} \Delta_{n} \\ \end{array} \right), \begin{array}{c} --- \\ --- \end{array} \right)$

Weakh at fine
$$n = \Delta_n \cdot S_n = \sum_{i=0}^{d} \Delta_n \cdot S_n$$

Self financy i $\Delta_n \cdot S_{n+1} = \Delta_{n+1} \cdot S_{n+1}$
Acome $D_n X_n$ is a \tilde{P} mg.
Nad to find $\Delta_n + X_n = \Delta_n \cdot S_n$
 $Q = \Delta_n \cdot S_{n+1} = \Delta_{n+1} \cdot S_{n+1}$
Note: Sime the market is complete, for any \tilde{F}_{n+1} meas. R.V. \tilde{X}_{n+1}

Question 7.17. Consider a market consisting of a bank with interest rate r, and two stocks with price processes S^1 , S^2 . At each time step we flip two independent coins. The price of the *i*-th stock ($i \in \{1,2\}$) changes by factor u_i , or d_i depending on whether the *i*-th coin is heads or tails. When is this market arbitrage free? When is this market complete?



Claim will a confidence)
Claim i this Market can NEVER be made complete & art free
Charicles Ishel to happene often the first time peirod:
Look for the RNM. 2 coine
$$\rightarrow$$
 atomes HH, HT, TH, TT.
RNM probabilize: $F(HH)$, $F(HT)$, $F(TH)$, $F(TT)$.
Want $(4\pi) \stackrel{1}{\to} \stackrel{2}{\to} \stackrel{2}{\to}$

Ill constrained system
$$\rightarrow if$$
 solutions exist they will NEVR to unique.
(Market can never be comflete to art fine)
Q° Say $0 < 4\pi d_1 < 1+r + < m_1$ Doec the \rightarrow existence of a RNM.
 $\forall 0 < d_2 < 1+r < m_2$ Doec the \rightarrow existence of a RNM.
Neve: Let $\tilde{f}_1 = \frac{1+r - d_1}{m_1 - d_1}$, $\tilde{f}_1 = \frac{m_1 - (1+r)}{m_2 - d_2}$

k (hore $\overline{p}(HH) = \overline{h_1} \cdot \overline{h_2}$ $\mathcal{F}(HT) = \mathcal{F}_{1} \mathcal{F}_{2}$ $f(T+1) = \#q_1 f_2$ $f(TT) = \tilde{f}, \tilde{f},$ & check this gives a RWM.

 \mathcal{M}

 $(1) \quad \forall \cap \overline{Q} = \{0\} \quad z \Rightarrow \exists (\widehat{n}) \in \widehat{Q} \quad \Rightarrow \widehat{n} \perp \forall$ (Stated but did map prove) (Hyf selp thm) Say J a RNM NTS no art 2) $S_{ry} = 0, \quad X \ge 0. \quad k_{max} (D_n X_n) \text{ is a } m_q m_{dr} \hat{P}$ $\Rightarrow E D_{N} X_{N} = E D_{N} X_{0} = 0$ $\Rightarrow X_{N} D_{N} \ge 0 R E (D_{N} X_{N}) = 0 \Rightarrow T_{N} X_{N} = 0$