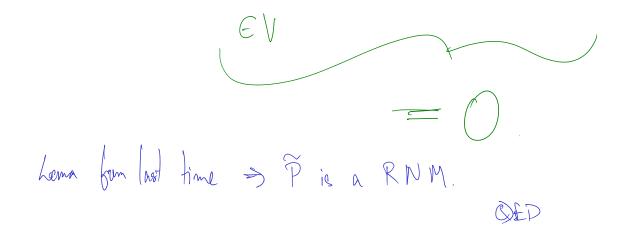
Last time: if find then: No and
$$\Rightarrow \exists a RNM$$

If from last time: A sume no ort. NTS $\exists a RNM$.
Cajing to constit P with $PMF = \tilde{f}(\omega) = \tilde{f}_1(\omega_1) \tilde{f}(\omega_1, \omega_2) - \tilde{f}_N(\omega_1 \cdot \omega_N)$.
Find $\tilde{f}_N \cdot \rightarrow Fix \quad \omega' \in = (\omega_1, -\omega_N)$
Let $V = \{ \begin{pmatrix} S_N(\omega) \cdot S_{N+1}(\omega', 1) \\ \vdots \end{pmatrix} \\ A_N(\omega') \cdot S_{N+1}(\omega', M) \end{pmatrix} \quad \text{Net worth } D \text{ of time } N$

it convide = not worth at time not if (not) die vall is g. Van churk: V G RM is a subspice (HW, please duck) $\overline{Q} = \{ v \in \mathbb{R}^{M} \mid v_{i} \ge 0 \}, \quad \widehat{Q} = \{ v \in \mathbb{R}^{M} \mid v_{i} > 0 \}$ Note: No and $\implies \vee \cap \overline{\mathbb{Q}} = 202$. Separtion luna \Rightarrow $\exists \hat{n} \in \hat{Q} \neq |\hat{n}| = |\hat{Q} + \hat{n} + V$ (i.e. $\hat{n} \cdot v = O \forall v \in V$).

Use \widehat{M} to define $\widetilde{P}_{n+1}(\omega', \tilde{j}) \circ \widetilde{P}_{n+1}(\omega', \tilde{j}) = \frac{\widetilde{M}}{\widetilde{M}} \widehat{M}_{\tilde{\ell}}$ $\Rightarrow \widetilde{E}_{n}(\Delta_{n} \cdot S_{n+1})(\omega') = \sum_{j=1}^{M} \Delta_{n}(\omega') \cdot S_{n+1}(\omega', j) \cdot \widetilde{F}_{n+1}(\omega', j)$



7.3. Second fundamental theorem. \checkmark

Definition 7.11. A market is said to be *complete* if every derivative security can be hedged.

Theorem 7.12. The market defined in Section 7.1 is complete and arbitrage free if and only if there exists a unique risk neutral measure.

Lemma 7.13. The market is complete if and only if for every
$$F_{n+1}$$
-measurable random variable X_{n+1} , there exists a (not necessarily unique) F_n measurable random vector $\Delta_n = (\Delta_n^0, \dots, \Delta_n^d)$ such that $X_{n+1} = \Delta_n \cdot S_{n+1}$.
PL' Sing first $\forall X_{n+1} \equiv \Delta_n \xrightarrow{\sim} X_{n+1} \equiv \Delta_n \cdot S_{n+1}$.
(take fortion Δ_n at time n
(unciden any security that forms: G_N at time N .
NTG $\equiv n$ rep fortfollo. $\implies \exists a$ cell for the boomst with firms wealth G_N .
 O By here within $\equiv A_{N-1}$ (F_{N-1} means) $+ \Delta_{N-1} \cdot S_N = G_N$.
(2 $A_{N-1} \cdot S_{N-1}$ is F_{N-1} means $\implies \exists \Delta_{N-2}$ (F_{N-2} -means) $+ \Delta_{N-2} \cdot S_{N-1} - N_{N-1}$ N_{N-1}

R

Proof of Theorem 7.12 NTS complete + only five
$$\Longrightarrow$$
 unique RNM.
Reall hors we construted \widetilde{P} in the first find the.
Fix m , $\omega' = (\omega_1, \dots, \omega_m)$.
 $V = \left\{ \begin{pmatrix} \omega_1(\omega') & S_{n+1}(\omega', 1) \\ \vdots \\ A_n(\omega') & S_n(\omega', m) \end{pmatrix} \right\}$
 $A_n(\omega') & S_n(\omega') = 0$?
How did we constant RNM is Picked in $L \vee \mathcal{L}$ is \widetilde{C} (all + we condities)

Note any not the Net & he & gives a RNM by $f_{\eta}(\omega', j) = \frac{m_{\theta}}{M_{\eta}}$ Henre Unique RNM > Ja unique neQ+ InI=1 & n LV $\iff \dim(V) = M - 1 \quad \& \quad V \cap \overline{Q} = \frac{2}{9} O \left\{$ $\mathbb{R}^{M} = \operatorname{stan} \left\{ \begin{array}{c} \Delta_{\mathsf{n}}(\omega') \cdot S_{\mathsf{n}+1}(\omega', 1) \\ \vdots \\ \Delta_{\mathsf{n}}(\omega') \cdot S_{\mathsf{n}+1}(\omega', \mathsf{M}) \end{array} \right\} \xrightarrow{\mathsf{No}} \operatorname{andernoge} \left\{ \begin{array}{c} \mathcal{N}_{\mathsf{n}}(\omega') = \mathcal{O}_{\mathsf{n}}^{\mathsf{n}} \\ \mathcal{N}_{\mathsf{n}}(\omega', \mathsf{M}) \end{array} \right\}$

(de many norm rectors) Plan have X Enti Ry can be ann no and withen in the form Dy Sht completenes (by lerna)

(> completences &

no and QED.