hast time (adapted properess) stocks. Pinte - S' -- S D d Ś M.M. (medictanle) $S_{n+1}^{\circ} = (1 + \tau_n) S_n^{\circ}$ $(\tau_n \rightarrow intert wate, a dofted)$ $\mathcal{D}_{\text{iscont}} = \frac{1}{c^{\circ}} \quad (C = \mathcal{D}_{\text{iscont}} = 1)$ Self fineig : $\Delta_{M} = (\Delta_{n}, \dots, \Delta_{n})^{n}$ (pointing in the del ascerts) $A_{\rm M} \cdot S_{\rm M} = \text{wealth at time } m = \sum_{\rm D} A_{\rm M}^{\rm i} \cdot S_{\rm M}^{\rm i}$. $\Delta_{\mathsf{N}} \circ S_{\mathsf{N}+1} = \Delta_{\mathsf{N}+1} \circ S_{\mathsf{N}+1}$ Set for i

7.2. First fundamental theorem of asset pricing.

Definition 7.2. We say the market is arbitrage free if for any self financing portfolio with wealth process X, we have: $X_0 = 0$ and $X_N \ge 0$ implies $X_N = 0$ almost surely.

Definition 7.3. We say $\tilde{\boldsymbol{P}}$ is a *risk neutral measure* if $\tilde{\boldsymbol{P}}$ is equivalent to \boldsymbol{P} and $\tilde{\boldsymbol{E}}_n(\underline{D_{n+1}}S_{n+1}^i) = D_nS_n^i$ for every $i \in \{0, \ldots, d\}$.

Theorem 7.4. The market defined in Section 7.1 is arbitrage free if and only if there exists a risk neutral measure.

Lemma 7.5. If \tilde{P} is a risk neutral measure, then the discounted wealth of any self financing portfolio is a \tilde{P} -martingale. Proof that existence of a risk neutral measure implies no-arbitrage. (hest time) -> did fast time.

hoal mos: No arb => I a RNM.

Lemma 7.6. Suppose the market has no arbitrage, and X is the wealth process of a self-financing portfolio. If for any n, $X_n = 0$ and $X_{n+1} \ge 0$, then we must have $X_{n+1} = 0$ almost surely.

Pf: Sy we had
$$X_n = 0$$
, $X_{nn} \ge 0$ & $P(X_{nn} > 0) > 0$.
then more all \$ to back
Set ≥ 0 wealth at time N
 $\lambda P(0 < wealth at time N) > 0$ Sty the nor
and assuffson
 OFD

Lemma 7.7. Suppose we find an equivalent measure \tilde{P} such that whenever $\Delta_n \cdot S_n = 0$, we have $\tilde{E}_n(\Delta_n \cdot S_{n+1}) = 0$, then \tilde{P} is a risk neutral measure.

$$F_{i}^{i}: NTS \ \widetilde{E}_{m}(P_{n+1}S_{n+1}^{i}) = D_{n} S_{n}^{i} \qquad \forall i \in \mathfrak{I}_{\infty}^{i} - d \}$$

$$F_{inst chose the for i=1 (For other i the proof is idulical)$$

$$At time n S \ buy 1 chose of it take. (Lots S_{n})$$

$$S \ cell S_{n}^{i} \ coch. (= S_{n}^{i} \ chose of M.M. other on)$$

$$i.e. \ Chose \ S_{n} = \left(S_{n}^{i} \ coch - 0\right)$$

Note
$$\Delta_n \cdot S_n = \begin{pmatrix} -S_n \\ S_n \end{pmatrix} \cdot , \circ \cdots \end{pmatrix} \cdot \begin{pmatrix} S_n \\ S_n \end{pmatrix} \cdot$$

 $\Rightarrow \tilde{E}_{n} S_{n+1} = \frac{S_{n}}{c^{0}} \cdot S_{n+1}^{U}$ $\Rightarrow \widetilde{E}_{n}(\widetilde{P}_{n+1}, \widetilde{S}_{n+1}) = \widetilde{D}_{n}\widetilde{S}_{n} \qquad \Rightarrow \widetilde{D}_{n}\widetilde{S}_{n} \quad \text{is a } \widetilde{P} \quad \text{mg}$ Repart for all i => P_n S_n' is a P mg Hi >> P is a RN PM OED.

Lemma 7.8. Suppose \tilde{p} is a probability mass function such that $\tilde{p}(\omega) = \tilde{p}_1(\omega_1)\tilde{p}_2(\omega_1,\omega_2)\cdots\tilde{p}_N(\omega_1,\ldots,\omega_N)$. If X_{n+1} is \mathcal{F}_{n+1} -measurable, then

$$\underbrace{\tilde{E}_n X_{n+1}(\omega)}_{i=1} = \sum_{i=1}^M \underbrace{\tilde{p}_{n+1}(\omega', j) X_{n+1}(\omega', j)}_{i=1}, \quad where \quad \underline{\omega'}_{i=1} = (\underbrace{\omega_1, \ldots, \omega_n}_{i=1}), \quad \omega = (\omega', \underbrace{\omega_{t+1}, \ldots, \omega_N}_{i=1})$$

Lemma 7.9. Define $\underline{\hat{Q}} \stackrel{\text{def}}{=} \{v \in \mathbb{R}^M \mid v_i \ge 0 \ \forall i \in \{1, \dots, M\}\}, and \underline{\hat{Q}} \stackrel{\text{def}}{=} \{v \in \mathbb{R}^M \mid v_i \ge 0 \ \forall i \in \{1, \dots, M\}\}.$ Let $\underline{V} \subseteq \underline{R}^M$ be a subspace.

 $\overline{Q} = \{x \mid x_i \ge 0\}$ $\overline{Q} = \{x \mid x_i \ge 0 \text{ fi}\}$

(1) $V \cap \overline{Q} = \{0\}$ if and only if there exists $\hat{n} \in \mathring{Q}$ such that $|\hat{n}| = 1$ and $\hat{n} \perp V$. $(\widehat{v} \cdot v) = \bigcirc \forall v \in V$ (2) The normal vector \hat{n} is unique if and only if $\dim(V) = M - 1$.

Remark 7.10. This is a special case of the Hyperplane separation theorem used in convex analysis.

Proof of Theorem (7.4.) Assume no ant. NTS ∃ a RNM.
① Conclud the RNM using a PMF & d the form

$$F(\omega) = F_1(\omega_1) F_2(\omega_1, \omega_2) - F_N(\omega_1, - \omega_{qN})$$

2 bill find each F_{q} .
③ Pick $n \in \{0, -.., N-1\}$. Will find F_{qN}
③ Know No art → No art of time N .

i.e. If $S_n \cdot S_n = O k \Delta_n \cdot S_{n+1} \ge O$

 $\mathcal{L} \Delta_{\mathrm{MH}} \cdot \mathcal{S}_{\mathrm{MH}} = \Delta_{\mathrm{M}} \cdot \mathcal{S}_{\mathrm{MH}}$

 $\Rightarrow \Delta_{M+1} = 0$

Fix $\omega' = (\omega_1, - \omega_n)$. Wonthe $\Delta_{n+1} = \Delta_{n+1}(\omega', \omega_{n+1})$. Let $V = \begin{cases} \left(\begin{array}{c} \Delta_{u}(\omega') \cdot S_{n+1}(\omega', 1) \\ \Delta_{n}(\omega') \cdot S_{n+1}(\omega', 2) \\ A_{n}(\omega') \cdot S_{n+1}(\omega', M) \end{array} \right) \qquad \Delta_{u}(\omega') \cdot S_{u}(\omega') = 0 \end{cases}$

Think of V G R^M. Note V is a subspace of R^M. No arb. $V \cap \overline{Q} = {0}$ Q= ZV Vo 20 { Fy leme Za mond heater $\hat{n} \in Q$ Will use \hat{n} to constant RNM. $\hat{\mathcal{M}} = \hat{\mathcal{M}}(\omega') = \begin{pmatrix} \hat{\mathcal{M}}(\omega') \\ \vdots \\ \hat{\mathcal{M}}_{\mathcal{M}}(\omega') \end{pmatrix}. \quad \text{Set} \quad \hat{\mathcal{M}}_{\mathcal{M}}(\omega', j)$ $\mathcal{M}_{\mathcal{O}}(\omega')$ - Z M

Claim (You chek); $\mathcal{E}_{\mathcal{N}}(\Delta_{\mathcal{N}}, \mathcal{S}_{\mathcal{N}}) = 0$ $(B_y \ lema \Rightarrow) \overrightarrow{P} \ is a \ RWM \Rightarrow QED.)$