7. Fundamental theorems of Asset Pricing

- 7.1. Markets with multiple risky assets.
- (1) $\Omega = \{1, \dots, M\}^{N}$ is a probability space representing N rolls of M-sided dies, and <u>p is a probability mass function on Ω .</u> The die rolls need not be i.i.d. (2)
- (3) Consider a financial market with d+1 assets S^0, S^1, \ldots, S^d . (S^k) denotes the price of the k-th asset at time n.)
- For $i \in \{1, \ldots, d\}$, S^i is an adapted process (i.e. $S^i_{\mathcal{D}}$ is \mathcal{F}_n -measurable).

For $i \in \{1, \ldots, u_1, \ldots\}$) The 0-th asset S^0 is assumed to be a <u>rise fixe</u> (a) Let r_n be an adapted process specifying the interest rate at time n. (b) Let $S_0^0 = 0$, and $S_{n+1}^0 = (1 + r_n)S_n^0$. (Note S^0 is predictable) (c) Let $\underline{D}_n = (S_n^0)^{-1}$ be the discount factor $(D_n$ dollars at time 0 becomes 1 dollar at time n). (6) Let $\underline{\Delta}_n = (\overline{\Delta}_n^0, \ldots, \overline{\Delta}_n^d)$ be the position at time \overline{n} of an investor in each of the assets (S_n^0, \ldots, S_n^d) . (7) The wealth of an investor holding these assets is given by $X_n = \overline{\Delta}_n \cdot S_n \stackrel{\text{def}}{=} \sum_{i=1}^d \Delta_n^i S_n^i$.

M

Q° Say au inverta has position on An on the destockes Money Maket. (a) What does it mean for the investors wealth to be cell finaing? (i.e. \longrightarrow no cash flow injetion/venoral) Rinorial model Wealth at time m_{v} $\sum_{i=n}^{d} \sum_{m=1}^{i} \sum_{m=1}^{i}$ Say position at time n is Δn . At time $(n+1) \rightarrow my portfolio$ is now worth $\sum_{i=0}^{n} \Delta_n S_{n+1} = (\Delta_n S_{n+1})$

.

Definition 7.1. Consider a portfolio whose positions in the assets at time \underline{n} is $\underline{\Delta_n}$. We say this portfolio is <u>self-financing</u> if $\underline{\Delta_n}$ is adapted, and $\underline{\Delta_n \cdot S_{n+1}} = \underline{\Delta_{n+1}} \cdot S_{n+1}$.

7.2. First fundamental theorem of asset pricing.

Definition 7.2. We say the market is arbitrage free if for any self financing portfolio with wealth process X, we have: $X_0 = 0$ and $X_N \ge 0$ implies $X_N = 0$ almost surely. **Definition 7.3.** We say \tilde{P} is a risk neutral measure if $|\tilde{P}|$ is equivalent to P| and $\tilde{E}_n(D_{n+1}S_{n+1}^i) = D_nS_n^i$ for every $i \in \{0, \ldots, d\}$. **Theorem 7.4.** The market is arbitrage free if and only if there exists $|a\rangle$ risk neutral measure. Proof that existence of a risk neutral measure implies no-arbitrage. $\left(\begin{array}{c} \operatorname{back} \end{array}\right) \\ \left(\begin{array}{c} \operatorname{back} \end{array}\right) \\ = 1 \\ = D_{n} \\ S_{n} \\ \end{array}$ $\operatorname{Keon}(: S_{u+1}^{U} = (1+\tau_{u}) S_{u}^{O}$ is equivalent to $P(A) = O \iff \widetilde{P}(A) = O$

Pl of FTAP1 (=: Assume] a noRNM. NTS -> No mb. Pf. X = wealth process of a self for portfolio. $X_{\eta} = \Delta_{\eta} \cdot S_{\eta} \quad \& \quad X_{\eta} \cdot S_{\eta+1} = \Delta_{\eta\eta} \cdot S_{\eta+1}$ Q: Is DuXn a P mg? Yes: Clack: $E_{n}(D_{n+1}X_{n+1}) = E_{n}(D_{n+1}Z_{n+1}, S_{n+1})$ (Dn is predictole)

 $= \mathcal{D}_{M+1} \widetilde{E}_{M} \left(\mathcal{L}_{M+1} \cdot \mathcal{S}_{M+1} \right)$ colf finning Dans Em (Ano Smm) $= D_{n+1} E_n \left(\begin{array}{c} d \\ z \\ i=D \end{array} \right) \left(\begin{array}{c} \lambda_n \\ i=D \end{array} \right) \left(\begin{array}$ $= D_{\mathcal{H}} \left(A_{\mathcal{H}} \cdot S_{\mathcal{H}} \right) = D_{\mathcal{H}} X_{\mathcal{H}}$ OED (Usin)

Have showen: X' = wealth proces of a self fin Port $\langle \rangle \gg 0$ $\Rightarrow D_{N}X_{n}$ is $A P mg \Rightarrow E(D_{N}X_{N}) \stackrel{mg}{=} E(D_{N}X_{0}) = 0$ $\implies \mathcal{D}_{\mathcal{N}} \chi_{\mathcal{N}} = \mathcal{O} \quad \text{a.s.} \quad \left(\begin{array}{c} \mathcal{O} & \mathcal{D}_{\mathcal{N}} \chi_{\mathcal{N}} \\ \mathcal{O} & \mathcal{O} \end{array} \right)$

 $\Rightarrow X_{N} = D \quad a.s \quad (:D_{N} > D).$

QED.