G = (Go, -- GN). Snell sufur my envelope : $V_N = G_N$, $V_n = \max_{n} \{G_n, E_n V_{n+1}\}$ hoston (i) V is the smallest snow my + V > G. Last fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortinal storing |

And fru (2) pt = min &n | V_n = G_n & T salare the fortin i.e. EGT > EGT for all finte storers times T (T' is a stoping time).

Theorem 6.81. Let V = M - A be the Doob decomposition for V, and define $\tau^* = \max\{n \mid A_n = 0\}$. Then τ^* is a stopping time and is the largest solution to the optimal stopping problem for G. $M \longrightarrow M_{\Lambda}$ Note $\{t \leq n\} = \{A_{n+1} > 0\} \in \mathcal{E}_n$ A spred ine RAD =0 EGy > EGy + fine starting time T. ("i A is fined) 2 (2) If ox is a salu to the opt stating anden for G then

Pf: (1) Claim $V_{CX} = M_{CY} = G_{CX}$ (a) If $t^* = N \longrightarrow V_N = G_N = M_N$. (noting to clube).

$$\begin{array}{lll}
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

 $\begin{pmatrix}
W & w & = z \\
A_{n} & = 0 & = 0
\end{pmatrix}$ $k A_{n \times 1} > 0$ < 4 7 = m 2 Vn

Vn = max & Envnn, Gn (

Where shown when
$$a = t^*$$
, $V_n > E_n V_{n+1}$

$$\Rightarrow V_n = G_n. \qquad \left(A_n = 0 \Rightarrow M_n = V_n = G_n + \frac{t^*}{n}\right). \text{ QEP.}$$
Hence we know $V_{t^*} = M_{t^*} = G_{t^*}$.

(2) Wheat t^* is offinal: $V_t = G_t = E_n + \frac{t^*}{n}$.
$$E_n = G_n + \frac{t^*}{n}$$

$$E_n = G_n$$

Say
$$T^* > t^*$$
 is the largest sol to the optimal stooping fraction.

Say $T^* > t^*$ is a solution to the optimal stooping fraction for Gr.

2 Say $P(T^* > t^*) > 0$.

Thum $EG_{XX} \leq EV_{XY} = E(M_{XX} - A_{XX})$ $= EM_{XX} - EA_{XX}$ $OST = EM_{XX} - EA_{XX}$

$$= EG_{t} - EA_{t}$$

$$Note \ \sigma^{*} > t^{*} > A_{t} > A_{t} > A_{t} = 0$$

$$= EG_{t} - EA_{t} + A_{t} + A_{t} = 0$$

$$= EG_{t} - EA_{t} + A_{t} + A_{t} + A_{t} = 0$$

$$= EG_{t} - EA_{t} + A_{t} + A_{t} + A_{t} = 0$$

$$= EG_{t} - EA_{t} + A_{t} + A_{t} + A_{t} = 0$$

$$= EG_{t} - EA_{t} + A_{t} + A_{t} + A_{t} = 0$$

$$= EG_{t} - EA_{t} + A_{t} + A_{t} + A_{t} = 0$$

$$= EG_{t} - EA_{t} + A_{t} + A$$