hast time: Doot denomp: X = M + Amg freed, $A_0 = 0$ Super mg : X = M - A mg pard ime Az=D \Rightarrow By OST $E_{n}X_{T} \leq X_{TNN}$ (X is a super mg) (lobe) zi J

Theorem 6.76 (Snell). Let \underline{G} be an adapted process, and define V by $\underbrace{V_N = G_N}_{\Sigma} \qquad \underbrace{V_n = \max_{\Sigma} \{ E_n V_{n+1}, \underline{G_n} \}}_{\Sigma} \qquad (\ \mathcal{M} \ \leq \ \mathcal{N}).$ Then V is the smallest super-martingale for which $V_n \ge G_n$. V is called the Smell envelope of G. $P_{V_n} = G_n \quad (: V_n = max \{ E_n V_{n+1}, G_n \})$ (2) Vish énder ma (" $V_{M} = Max 2$ } $E_{M} V_{M+1}$) (3) NTS V is the smallest super mg $\geq G_{-}$ i.e. If Wish supermy, $W \ge G \implies W \ge V$. $P_{f}: Sima \ W_{N} \geqslant G_{N} = V_{N} \implies W_{N} \geqslant V_{N}$

Backbood induction: Say Writi > Vinti Wis a show mg \Rightarrow $W_{n} \ge E_{n} W_{n+1} \ge E_{n} V_{n+1}$ Also know $W_{\eta} \ge \underline{G}_{\eta}$ $\Rightarrow W_{n} \ge \max \{G_{n}, E_{n}V_{n+1}\} = V_{n}$. QED.

Proposition 6.77. If W is any martingale for which $W_n \ge G_n$, and for one stopping time τ^* we have $EW_{\tau^*} = EG_{\tau^*}$, then we must have $W_{\tau^* \wedge n} = V_{\tau^* \wedge n}$, and $W_{\tau^* \wedge n}$ is a martingale. V = 5 well super my envolver of G. **Theorem 6.78.** Let $\underline{\sigma}^* = \min\{n \mid V_n = \underline{G}_n\}$. Then σ^* is the minimal solution to the optimal stopping problem for G. Namely, $EG_{\sigma^*} = \max_{\sigma} EG_{\sigma}$ where the maximum is taken over all finite stopping times σ . Moreover, if $EG_{\tau^*} = \max_{\sigma} EG_{\sigma}$ for any other $EG_{\underline{\sigma}^*} = \max_{\sigma} \underline{EG_{\sigma}} \text{ where the maximum is unch out on the sene as we had for human objects finite stopping time <math>\tau^*$, we must have $\tau^* \ge \sigma^*$. Remark 6.79. By construction $v_{\sigma^* \wedge n} = v_{\sigma^*}$ $\downarrow \not P_{\xi^0}$. Note $W_n \ge V_n$ $\forall n (: W is a mg =) W is a super mg$ $<math>k given W \ge G \Rightarrow W \ge V$). *Remark* 6.79. By construction $V_{\sigma^* \wedge n}$ is a martingale. $\lim_{t \to \infty} \mathcal{E} W_{t^*} \approx \mathcal{E} G_{t^*} \mathcal{L} W_{t^*} \gg \mathcal{G}_{t^*} \implies \mathcal{W}_{t^*} = \mathcal{G}_{t^*}$ $\begin{array}{ccc} & & & \\ &$

(leim ; W = V the The. $(Intertion : W_{thn} \ge V_{thn}$ Super mg Gnese => Equality.) Ma Pf: Backwood Induction: () W tAN = V TAN $\left(\begin{smallmatrix} \mathfrak{o} & \mathfrak{o} \\ \mathfrak{o} & \mathfrak{o} \\ \end{array}\right) \stackrel{\mathsf{T}}{\to} \leq \mathcal{N}$

2 Asume for some M, $\Rightarrow E_{M}\left(\mathcal{W}_{\mathcal{T}^{*}\Lambda(\mathcal{U}_{\mathcal{H}})}\right) = E_{M} \bigvee_{\mathcal{T}^{*}\Lambda(\mathcal{H}+1)}$ $\begin{array}{l} (OST) \\ \Rightarrow \end{array} W = E_{\mathcal{U}} V_{\mathcal{T}^* \wedge (\mathcal{M}^{+1})} \leq V_{\mathcal{T}^* \wedge \mathcal{M}} \\ \mathcal{T}^* \wedge \mathcal{M} \end{array}$ Sime WITAM > VITAM => WITAM = VITAM. RED

Theorem 6.80. For any $k \in \{0, ..., N\}$, let $\sigma_k^* = \min\{n \ge k \mid V_n = G_n\}$. Then $E_k G_{\sigma_k^*} = \max_{\sigma_k} E_k G_{\sigma_k}$, where the maximum is taken over all finite stopping times σ_k for which $\sigma_k \ge k$ almost surely. 1100 Q.C EkGTR for all finte stopping times TR such that TR >R A.S.

Theorem 6.81. Let V = M - A be the Doob decomposition for V, and define $\tau^* = \max\{\underline{n} \mid A_n = 0\}$. Then τ^* is a stopping time and is the largest solution to the optimal stopping problem for G.

P[:
$$O t^*$$
 is a stopping time bearse A is predictible & inc (Intripion).
Pf: $\{t^* \leq n\} = \{A_{n+1} > 0\} \in \{t^* \land t^* \leq n\}$.
(** A is predictable).
(** A is predictable).

Whn D (Know G = V $|A|_{\pi^{\times}}$ L ¥ X A = it is r Sal Ì The tagest to the official

7. Fundamental theorems of Asset Pricing

1