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6.6. Doob Decomposition and Optimal Stopping.

Theorem 6.68 (Doob decomposition). Any adapted process can be uniquely expressed as the sum of a martingale and a predictable
process that starts at 0. That is, if X is an adapted process there exists a unique pair of process M, A such that M is a martingale,
A is predictable, Ao =0and X = M + A.
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Definition 6.69. We say an adapted process M is a sypeiw’g%if E, M,+1 < M,. C% [N Q,%,V M/\ﬁ>

Definition 6.70. We say an adapted process M is a sub-martingale if E, M, 11 = M,.

Ezxample 6.71. The discounted arbitrage free price of an American option is a super-martingale under the risk neutral measure.
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Proposition 6.72. If X isa W then there exists a unique martingale M_and increasing predictable process A such
that X = M — A.

Proposition 6.73. If X is a sub- martmgale then there exists a unique martingale M and increasing predictable process A such

that X = M—|—A (Q[Wiov w7 7aM cl\a/@&>
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Corollary 6.74. If X is a super-martingale and T is a bounded stopping time, then E, X; < X an.
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Corollary 6.75. If X is a sub-martingale and 7 is a bounded stopping time, then E, X, > X an-
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Theorem 6.76 (Snell). Let G be an adapted process, and define V by

VN = GN Vn = max{EnV,H_l, Gn} .
e

Then V' is the smallest super-martingale for which V, > G,,.









