6.5. American Options. An American option is an option that can be exercised at any time chosen by the holder.

Definition 6.51. Let G_0, G_1, \ldots, G_N be an adapted process. An American option with <u>intrinsic value</u> G is a security that pays G_{σ} at any finite stopping time σ chosen by the holder.

Example 6.52. An American put with strike K is an American option with intrinsic value $(K - S_n)^+$.

Question 6.53. How do we price an American option? How do we decide when to exercise it? What does it mean to replicate it?

Strategy I: Let σ be a finite stopping time, and consider an option with (random) maturity time σ and payoff G_{σ} . Let V_0^{σ} denote the arbitrage free price of this option. The arbitrage free price of the American option should be $V_0 = \max_{\sigma} V_0^{\sigma}$, where the maximum is taken over all finite stopping times σ .

Definition 6.54. The *optimal exercise time* is a stopping time σ^* that maximizes $V_0^{\sigma^*}$ over all finite stopping times.

Definition 6.55. An optimal exercise time σ^* is called *minimal* if for every optimal exercise time τ^* we have $\sigma^* \leq \tau^*$. *Remark* 6.56. The optimal exercise time need not be unique. (The *minimal* optimal exercise time is certainly unique.)

have I angeican office. Pick I spino storting time & sel the officer with war maturity [] Know how to price V_ = frice Sell to highest bidder - > Can sel MAX

Question 6.57. Does this replicate an American option? Say σ^* is the optimal exercise time, and we create a replicating portfolio (with wealth process X) for the option with payoff G_{σ} , at time σ^* . Suppose an investor cashes out the American option at time τ . Can we pay him?

Strategy II: Replication. Suppose we have sold an American option with intrinsic value G to an investor. Using that, we hedge our position by investing in the market/bank, and let X_{y} be the our wealth at time \underline{n} .

(1) Need $X_{\sigma} \ge G_{\sigma}$ for all finite stopping times σ . (Or equivalently $X_n \ge G_n$ for all n.) (2) For (at-least) one stopping time σ^* need $X_{\sigma^*} = G_{\sigma^*}$.

The arbitrage free price of this option is X_0 .

Soy we contradu of the anenian orthon of the
$$N_0 - \varepsilon$$
 of the D
Is then be at time $D \rightarrow bny$ oftion for $X_0 - \varepsilon$
short red faithering for X_0
 ε in toute.
My Nealth of time $n = G_n - X_n + \varepsilon(1+r)^n$
Nealth of any station time $\tau = G_n - X_n + \varepsilon(1+r)^n$
Choose $\tau = \sigma^2 = drived \Rightarrow Wealth = G_n - X_n + \varepsilon(1+r)$
 ε is the set of t

Proposition 6.58. In the binomial model with 0 < d < 1 + r < u, we must have $X_0 = \max\{\underbrace{V_0^{\sigma} \mid \sigma}_{l} \text{ is a finite stopping time }\}$.

Remark 6.59. The above is true in any complete, arbitrage free market.

X_n = wealth at time on of R. Portfolio above -Check $X_0 > V_0^T$ Y finde stading times T. If: For fixed exercise time T, $P_{ul} = 0; \quad \sqrt{p}' = E(P_{r}G_{t}) \leq E(D_{r}X_{r}) \stackrel{\text{OST}}{=} E(P_{s}S_{t})$

mg under P

 $\Rightarrow \chi^9 > \Lambda^1_{\Lambda} \quad \forall \quad \Delta$ > X > max EV 1 + is any finde stopped time? € Claim: Xo ≤ max {V} | T is any finde stopped time }. $\begin{array}{rcl} P_{\varphi}: \ Choole & \nabla - \nabla^{*} = & affinal exercise fine. & QED. \\ Knows & X_{T} & = & G_{T} & . & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & &$

Question 6.60. Is the wealth of the replicating portfolio (for an American option) uniquely determined?