Question 6.46. Say <u>M</u> is a martingale. We know $EM_{n} = EM_0$ for all n. Is this also true for stopping times?

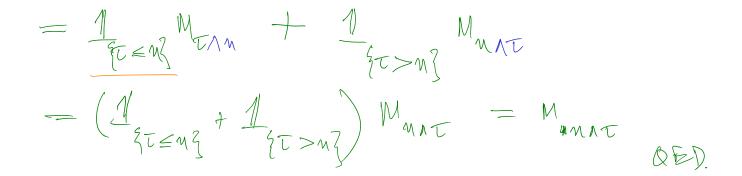
B: EM_ for some staffing time T I EM **Theorem 6.47** (Doob's optional sampling theorem) $Let \tau$ be a bounded stopping time and \underline{M} be a martingale. Then $\underline{E_n M_\tau} = \underline{M_{\tau \wedge n}}$.

Rember 1: Knows
$$E_n M_{n+1} = M_n$$
.
Choose $t = M + 1$ (stoffing time)
OST: $E_n M_t = M_{TAM}$
 $E_n M_{n+1}$
 $M_{M_{n+1}} = M_n$.

Proof of OST: T is bed $(\Rightarrow P(T=0) = 0)$ $E_{M}M_{c} = E_{M}\left(\sum_{k=0}^{N} \frac{1}{\xi \tau_{z}} M_{k}\right) = \sum_{k=0}^{N} E_{M}\frac{1}{\xi \tau_{z}} M_{k}$ $= \sum_{k=0}^{n} \sum_{m=1}^{n} \sum_{k=k}^{m} M_{k} + \sum_{k=n}^{n} \sum_{m=1}^{n} \sum_{i=k}^{n} M_{k}$ con verone (it a stofping time =) $2t - k^{2} \in \mathcal{E}_{p} \vee k$ $= \sum_{k=0}^{n} 1 \sum_{k=0}^{n} M_{k} + \sum_{k=0}^{n} E_{k} 1 \sum_{k=0}^{n} E_{k} M_{N}$ (° Mig

 $= \sum_{k=0}^{N} \frac{1}{3\tau_{ck}} M_{k} + \sum_{k=n+1}^{N} E_{k} \left(\frac{1}{3\tau_{ck}} M_{N} \right)$ E $+\sum_{k=n+1}^{N} \mathcal{F}_{n}\left(\underbrace{\mathcal{I}}_{\{\tau-k\}}^{M} M\right)$ $+ E_{M} \left(\left(\begin{array}{c} N \\ 2 \\ k = n\eta \end{array} \right) \right) \right)$ ENI

 $= \sum_{k=0}^{1} M_{k} + \frac{1}{k} + \frac{$



Proposition 6.48. Suppose a market admits a risk neutral measure. If X is the wealth of a self-financing portfolio and τ is a finite stopping time such that $X_0 = 0$, and $X_{\tau} \ge 0$, then $X_{\tau} = 0$. $(A \cdot \hat{s})$ Remark 6.49. This is simply an alternate proof of Proposition 6.45. $(D_n X_n)$ is a map Kuns Da Xa is a mg moter Ř (RNM) Whenever Xr is the walth o a self financia Pf. a $\rightarrow E(P_T X_T) = E(D_T X_T)^{OST}$ Note $X_T \ge O$ a.s. $\Rightarrow P_T X_T \ge O$ a.s. $(: D_T > O)$ $2 \in P_{T}X_{T} = 0 \implies D_{T}X_{T} = 0 \quad (a.s.)$ Sime DX >0 =) X = O ac OET.

Renak: OST => If Misama may => EM_= = EM_D & T is a bold stopping time }=> EM_E = EM_D $(:EM_{T} = EE_{O}M_{T} \stackrel{\text{OCT}}{=} EM_{D})$

Question 6.50 (Gamblers ruin). Suppose $N = \infty$. Let X_n be *i.i.d.* random variables with mean 0 and let $S_n = \sum_{1}^{n} X_k$. Let $\tau = \min\{n \mid S_n = 1\}$ (It is known that $\tau < \infty$ almost surely.) What is $\mathbf{E}S_{\tau}$? What is $\lim_{N \to \infty} \mathbf{E}S_{\tau \wedge N}$?) $S_0 = 0$, $S_1 = X_1$, $S_2 = X_1 + X_2$ Wote () I is a stopping time 2 Sy is a mg T= 7. 1.23 $(:: E_{M} S_{M+1} = E_{M} (S_{M} + X_{M+1}))$ $=S_{n}+\xi X_{n+1}=S_{n}$ $= E1 \neq ES_{n}H_{n}$ 3

(4) Claim: T < 00 almat surely (I is a finite stopping time) (5) Doce his contraliet DST (No because I is NOT bdd) Des this gave you an and at anothing? < NO Obernee you can min out of many before soming