

Definition 6.32. We say a random variable τ is a stopping time if:

(1) $\tau: \Omega \to \{0, \dots, N\}$ (∞) \rightarrow (2) For all $n \leq N$, the event $\{\tau \leq n\} \in \mathcal{F}_n$.

Remark 6.33. We say τ is a finite stopping time if $\tau < \infty$ almost surely.

Remark 6.34. The second condition above is equivalent to requiring $\{\tau = n\} \in \mathcal{F}_n$ for all n.

Question 6.35. $Is \tau = 5$ a stopping time? **Question 6.36.** Is the first <u>time the stock-price hits U</u> a stopping time? a=5 Question 6.37. Is the last time the stock price hits U a stopping time? Ves : TEM $S_{n} \geq U$ $T = Min_{1}$ M # & YM. $z \leq n^{2}$ ⇒ TEnze Kn $= \{s_{p} \geq u \mid \forall \{s_{p} \geq u \}$ $V = V \{S_n > U\} \in F_n$ > T is a starting { max {S, S, -- S, }>U{

Q: T= last time Sa crosses U NO! $\{\tau \leq u\}$ immines knowing $S_{uq} \leq U$, $S_{uq2} \leq U$ --- els. \wedge

Question 6.38. If
$$\underline{\sigma}$$
 and $\underline{\tau}$ are stopping times, is $\overline{\sigma} \wedge \tau$ a stopping time? How about $\overline{\sigma} \vee \tau^{2}$ Yes (use then
() $\overline{\tau} \wedge \tau^{2}$, $S_{1} \rightarrow \overline{s}_{0}$, $- N_{1}^{2} \cup \overline{s}_{0}^{2}$ (Yes) Interface.
(2) NTS $\overline{s} \tau \wedge \tau \leq n_{1}^{2} \in \overline{s}_{n} + n$.
Pl: $\overline{s} \tau \wedge \tau \leq n_{1}^{2} = \overline{s} \tau \leq n_{1}^{2} \cup \overline{s}_{1} \leq n_{1}^{2}$
($\overline{s} \tau \wedge \tau \leq n_{1}^{2} = \overline{s} \tau \leq n_{1}^{2} \cup \overline{s}_{1} \leq n_{1}^{2}$
 $\overline{s}_{n} = \overline{s} \tau \leq n_{1}^{2} \cup \overline{s}_{1} \leq n_{1}^{2} = n_{1}^{2}$
 $\overline{s}_{n} = \overline{s} \tau \leq n_{1}^{2} \cup \overline{s}_{n} = \overline{s} \tau =$

- Let G be an adapted process, and σ be a finite stopping time.
- Consider a derivative security that pays G_{σ} at the random time σ .
- Note $G_{n} = \sum_{n=0}^{N} G_{n} \mathbf{1}_{\partial \leq n}$.
- Let $(X_0, (\Delta_n))$ be a self-financing portfolio, and X_n at time n be the wealth of this portfolio at time n.

Definition 6.39. A self-financing portfolio with wealth process X is a replicating strategy if $X_{\sigma} = G_{\sigma}$.

Theorem 6.40. The security with payoff G_{σ} (at the stopping time σ) can be replicated. The arbitrage free price is given by

$$\underline{X}_{n}\mathbf{1}_{\{\sigma \ge n\}} = \frac{1}{D_{n}}\tilde{E}_{n}(\underline{D}_{\sigma}G_{\sigma}\mathbf{1}_{\{\sigma \ge n\}})$$

Remark 6.41. The only thing required for the proof of Theorem 6.40 is the fact that X_n is the wealth of a self-financing portfolio if and only if $D_n X_n$ is a \tilde{P} martingale. $\langle \mathcal{F}_{\mathcal{V}}(\hat{\omega}) = \mathcal{F}_{\mathcal{V}}(\hat{\omega})$ $\langle \mathcal{F}_{\mathcal{V}} \rangle$ $\langle \mathcal{F}_{\mathcal{V}} \rangle$ $\langle \mathcal{F}_{\mathcal{V}} \rangle$ $\langle \mathcal{F}_{\mathcal{V}} \rangle$

 $G_{p} = \sum_{n=0}^{\infty} \frac{1}{3^{n}} = n^{2} G_{n}$