Last time: Marker Propers: (Memony less)
$$E_{n} \{(X_{n+1}) = g(X_{n})\}$$

$$\Rightarrow P(X_{n+1} = x_{n+1} | X_{1} = x_{1}, X_{2} = x_{2}, -1) X_{n} = x_{n})$$

$$= P(X_{n+1} = x_{n+1} | X_{n} = x_{n})$$

Definition 7.11. We say a d-dimensional process $Y = (Y^1, ..., Y^d)$ process is a state process if for any security with maturity $m \le N$, and payoff of the form $V_m = f_m(Y_m)$ for some (non-random) function f_m , the arbitrage free price must also be of the form $V_n = f_n(Y_n)$ for some (non-random) function f_n .

Remark 7.12. For state processes given f_N , we find f_n by backward induction. The number of computations at time n is of order

Remark 7.12. For state processes given f_N , we find f_n by backward induction. The number of computations at time n is of order Range (Y_n) .

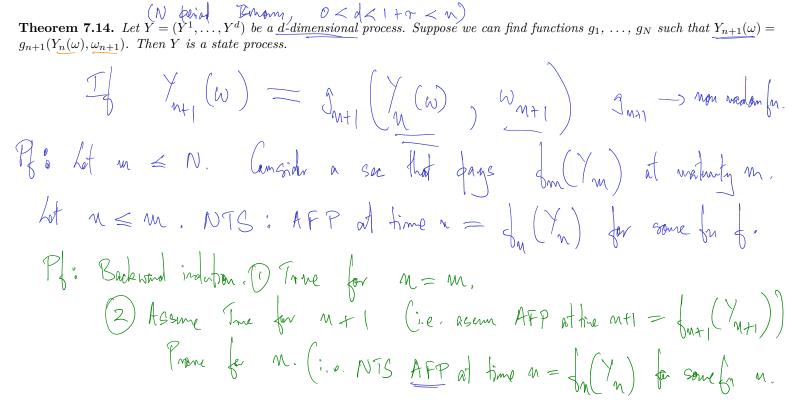
Remark 7.13. The fact that S_n is Markov (under \tilde{P}) implies that it is a state process. (Leg f time)

Super Sent — Condin les of the grander,

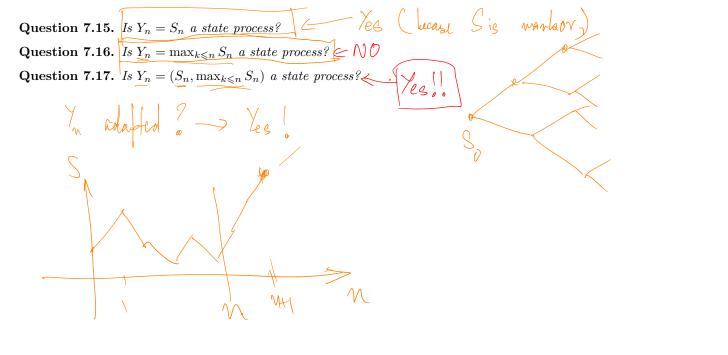
Super Sent — time

At time M

Notation for weether valued precises.
$$\frac{1}{2}$$
 $Y_{n} = (\frac{1}{2}, \frac{1}{2}, \frac{1}{$



 $\Rightarrow AFP \text{ of fime } n = \left(\frac{D_{n+1}}{D_n}\right) \stackrel{\sim}{E}_n \left\{ n_{+1} \left(Y_{n+1} \right) = \frac{1}{1+n} \stackrel{\sim}{E}_n \left\{ n_{+1} \left(Y_{n+1} \right) \right\} \right\}$ indep Ima = $\frac{1}{1+1}$ En $\frac{1}{1+$ some non-now on for of /n. OFD!



hot Man = max Sk. can write in tons of Sn & Wart S am express Ynti a stere groces.

Question 7.18. Let $A_n = \sum_{0}^{n} S_k$. Is A_n a state process? NOT Question 7.19. Is $Y_n = (S_n, A_n)$ a state process?