6. The multi-period binomial model

• In the multi-period binomial model we assume $\Omega = \{\pm 1\}^N$ corresponds to a probability space with N i.i.d. coins.

• Let
$$u, d > 0, S_0 > 0$$
, and define $S_{n+1} = \begin{cases} uS_n & \omega_{n+1} = 1, \\ dS_n & \omega_{n+1} = -1. \end{cases}$

- u and d are called the up and down factors respectively.
- Without loss, can assume d < u.
- Always assume no coins are deterministic: $p_1 = \mathbf{P}(\omega_n = 1) > 0$ and $q_1 = 1 p_1 = \mathbf{P}(\omega_n = -1) > 0$.
- We have access to a bank with interest rate r > -1.
- $D_n = (1+r)^{-n}$ be the discount factor (\$1 at time n is worth \$D_n at time 0.)

Theorem 6.1. There exists a (unique) equivalent measure \tilde{P} under which process $D_n S_n$ is a martingale if and only if d < 1 + r < u. In this case \tilde{P} is the probability measure obtained by tossing N i.i.d. coins with

$$\tilde{\boldsymbol{P}}(\omega_n = 1) = \tilde{p}_1 = \frac{1+r-d}{u-d}, \qquad \tilde{\boldsymbol{P}}(\omega_n = -1) = \tilde{q}_1 = \frac{u-(1\pm r)}{u-d}$$

Definition 6.2. An equivalent measure \tilde{P} under which $D_n S_n$ is a martingale is called the *risk neutral measure*. *Remark* 6.3. If there are more than one risky assets, S^1, \ldots, S^k , then we require $D_n S_n^1, \ldots, \overline{D_n S_n^k}$ to all be martingales under the risk neutral measure \tilde{P} .

- Consider an investor that starts with X_0 wealth, which he divides between cash and the stock.
- If he has Δ_0 shares of stock at time 0, then $X_1 = \Delta_0 S_1 + (1+r)(X_0 \Delta_0 S_0)$.
- We allow the investor to trade at time 1 and hold Δ_1 shares.
- Δ_1 may be random, but must be \mathcal{F}_1 -measurable. Continuing further, we see $X_{n+1} = \Delta_n S_{n+1} + (1+r)(X_n \Delta_n S_n)$ meas
- Both X and Δ are adapted processes.

Definition 6.4. A self-financing portfolio is a portfolio whose wealth evolves according to (X is anapted)

$$X_{n+1} = \Delta_n S_{n+1} + (1+r)(X_n - \Delta_n S_n),$$

for some adapted process Δ_n .

Theorem 6.5. Let $\underline{d} < 1 + r < \underline{u}$, and P be the risk neutral measure, and X_n represent the wealth of a portfolio at time n. The portfolio is self-financing portfolio if and only if the discounted wealth $D_n X_n$ is a martingale under \tilde{P} .

Remark 6.6. The only thing we will use in this proof is that $D_n S_n$ is a martingale under \tilde{P} . The interest rate r can be a random adapted process. It is also not special to the binomial model – it works for any model for which there is a risk neutral measure.

Before proving Theorem 6.5, we consider a few consequences:

Theorem 6.7. The multi-period binomial model is arbitrage free if and only if d < 1 + r < u.

Remark 6.8. The first fundamental theorem of asset pricing states that a risk neutral measure exists if and only if the market is arbitrage free. (We will prove this in more generality later.)

LAPPL: () Market has no antitage if $X_p = C$ X -> wealth at time on of a self-finera fortfalio. $\bigcirc \Rightarrow X_{\kappa_1} =$ $\lambda_{n} = 0$, $\lambda_{n} \geq 0$ No visk (almost endy). (almost endy) f: If d≥ 1+r or N ≤ 1+r > maket has amb. (her 2) ' Say X the wealth self finesing portfalio.

Suppose X > 0 almost unnely '& X = O Only used NTS $X_{N} = O$. If X is set fin Know Dy Xy is a my moder P, Hun Da X n is a mig under P (: my's have = EDNXN = EDNX = O $\sum E(1+m)^{N}X_{N} = 0 \\ \implies (+m)^{N}X_{N} = 0 \\ \implies (+m)^{N}X_{N} = 0 \\ \implies (+m)^{N}X_{N} = 0 \\ \implies X_{N} = 0 \\ =$

Find Neutral priving turb)
Theorem 6.9. Let
$$l \leq 1 + r \leq v$$
, and V_N be an F_N measurable random variable. Consider a security that $pay(\tilde{V}_N)$ at maturity
time N . For any $n \leq N$, the arbitrage free price of this security is given by
 $V_n = \frac{1}{D_n} \tilde{E}_n(D_N V_N)$. $= \tilde{F}_n\left(\frac{D_N V_N}{D_n}\right)$ (:: D_n is
 $f_n - udge)$
 $\int Let n = \tilde{F}_n(D_N V_N)$. $= \tilde{F}_n\left(\frac{D_N V_N}{D_n}\right)$ (:: D_n is
 $f_n - udge)$
 $\int Let n = \tilde{F}_n(D_N V_N)$. $= \tilde{F}_n\left(\frac{D_N V_N}{D_n}\right)$ (: D_n is
 $f_n - udge)$
 $\int Let n = \tilde{F}_n(D_N V_N)$. $= \tilde{F}_n(D_N V_N)$. $f_n = \tilde{F}_n(\tilde{F}_n + D_N V_N)$
 $\int Let n = \tilde{F}_n(D_N V_N)$ $= \tilde{F}_n(D_N V_N) = M_n$. QED
 $\int Let n = \tilde{F}_n(D_N V_N)$ $= \tilde{F}_n(D_N V_N) = M_n$ ($v_n = v_n = \tilde{F}_n(D_N V_N)$) $= \tilde{F}_n(D_N V_N)$

By Thm 6.5: Vn is the wealth of a self fining fortfolio. VN -> Payoff of my eventy => Vn = wealth at timen of a R. Pontatio > => (Wealth) V_n = AFP of the centy. (Write: in this then we used if DaXa is a my user P. then we not have $X_n = wealth of a self fineig patfalic).$ TOU: Pf of Them 6.5.

Remark 6.10. The replicating strategy can be found by backward induction. Let
$$\omega = (\omega', \omega_{n+1}, \omega'')$$
. Then

$$\Delta_n(\omega) = \frac{V_{n+1}(\omega', 1, \omega'') - V_{n+1}(\omega', -1, \omega'')}{u - d} = \frac{V_{n+1}(\omega', 1) - V_{n+1}(\omega', -1)}{u - d}$$
Prop : H is a rug then $E M_n = E M_0 \quad \forall n$.
Solution $E M_n = E M_{n+1}$ (Euse indition)
 $K_{10NN} \quad M_n = E_M M_{n+1} \Rightarrow EM_n = E E_M M_{n+1}$
 $E E_M X = E X$

$$K_{10NN} \quad M_n = K_{10} M_{10} = K_{10} M_{$$