Last time: Chaze of merene:

$$
\begin{array}{ll}
\Omega(P M F) & P(A)=\sum_{\omega \in A} \phi(\omega) \\
\longrightarrow(\text { imat }) \tilde{p}(\text { nens } P M F) & \hat{P}(A)=\sum_{\omega \in A} \tilde{\phi}(\omega)
\end{array}
$$

$1 P \& P$ ane equir $\quad \begin{aligned} & \quad \\ & \\ & \text { (altutely } \quad \phi(A)=0\end{aligned} \quad \Leftrightarrow \tilde{P}(A)=0$

$$
X_{n+1}=X_{n}+\underbrace{\omega_{n+1}}_{ \pm 1}+a \quad(a \in \mathbb{R}) \rightarrow x_{a} \neq 0 \Rightarrow X \text { is nata }
$$

Fond \vec{P} under winch X is a ang!

Example 5.50. Suppose now $\boldsymbol{P}\left(\omega_{n}=1\right)=p_{l}$ and $\boldsymbol{P}\left(\omega_{n}=-1\right)=q_{1}=1-p_{i}$. Let $\underline{u}, \underline{d>}>0, r>-1$. Let $\underline{S}_{n+1}(\omega)=\underline{u} S_{n}(\omega)$ if $\omega_{n+1}=1$, and $S_{n+1}(\omega)=d S_{n}(\omega)$ if $\omega_{n+1}=-1$. Let $D_{n}=(1+\underline{\underline{r}})^{-\bar{n}}$ be the "discount factor". Find an equivalent measure under which $D_{n} S_{n}$ is a martingale. $=$
$\left(\begin{array}{l}\text { Value of lade at time } n) \cdot \sum_{n}^{\sum_{n}} \\ (1+r)^{-n}\end{array}\right.$
Q: Find $\widetilde{P} \neq \tilde{p}$ is que to P is $D_{n} S_{n}$ is a mg.
$S_{\text {ar mo h }} \underset{\sim}{\sim} \rightarrow \underset{\sim}{\sim}\left(\omega_{i}=1\right)={\underset{p}{1}}^{\sim}$
Compute $\tilde{E}_{n}\left(D_{n+1} S_{n+1}\right) \quad\left(W_{n+1}=1-q_{1}=q_{1}=P_{n} S_{n}\right)$

$$
\begin{aligned}
& X_{n}=X(\omega)=\left\{\begin{array}{ll}
n & \text { if } \omega_{n}=1 \\
d & \text { if } \omega_{n}=-1
\end{array} \quad\left(\omega=\left(\omega_{1}, \omega_{2} \cdots \omega_{n}\right)\right)\right. \\
& \text { than } S_{n+1}=X_{n+1} S_{n} \\
& \Rightarrow \tilde{E}_{n}\left(D_{n+1} S_{n+1}\right)=(1+r)^{-(n+1)} \tilde{E}_{n}\left(X_{n+1} S_{n}\right) \\
& =D_{n+1} S_{u} \tilde{E}_{n} X_{n+1} \quad\left(\because S_{n} \text { is } \delta_{n} \text { mans }\right) \\
& =D_{n+1} S_{n} \tilde{E} X_{n+1} \quad\left(\begin{array}{c}
\because x_{m+1} \text { is ind } \operatorname{lig}_{n} f_{n} \\
\text { under } \\
\tilde{P}
\end{array}\right)
\end{aligned}
$$

$$
=D_{n+1} S_{n}\left(n \tilde{p}_{1}+d\left(1-\tilde{\phi}_{1}\right)\right) \stackrel{\text { Wat }}{=} D_{n} S_{n}
$$

Chare $\tilde{\phi}_{1}$ co that $(1+r)^{-(n+1)} q_{n}\left(n \tilde{p}_{1}+d \tilde{q}_{1}\right)=(1+r)^{-n} \psi_{n}$

$$
\Rightarrow u \tilde{p}_{1}+d \tilde{q}_{1}=1+\tau
$$

Sane: $\tilde{\phi}_{1}(n-d)+d=1+r \Leftrightarrow \tilde{p}_{1}=\frac{(1+r)-d}{n-d}$
Will man g gie an equiv mes $(E) d<1+\pi<n$

6. The multi-period binomial model

Example 6.1 (Binomial model revisited). Assume $\Omega=\{ \pm 1\}^{N}$. Let $u, d>0, S_{0}>0$. Define $S_{n+1}= \begin{cases}\underline{u} S_{n} & \omega_{n+1}=\underline{1,} \\ \underline{d} S_{n} & \omega_{n+1}=\underline{-1} .\end{cases}$

- \underline{u} and \underline{d} are called the up and down factors respectively.
- Without loss, can assume $\underline{d}<\underline{u}$.
- Always assume no coins are detèrministic: $p \boldsymbol{P}\left(\omega_{n}=1\right)>0$ and $q=1-p=\boldsymbol{P}\left(\omega_{n}=-1\right)>0$.
- Let $\underline{r}>-1$ be the interest rate, and $D_{n}=(1+r)^{-n}$ be the discount factor.

Theorem 6.2. There exists a (unique) equivalent measure $\tilde{\boldsymbol{P}}$ under which process $D_{n} S_{n}$ is a martingale if and only if $d<1+r<u$.
In this case $\tilde{\boldsymbol{P}}$ is given by:

$$
\tilde{\boldsymbol{P}}\left(\omega_{n}=1\right)=\tilde{p}_{1}=\frac{1+r-d}{\underline{u-d}}, \quad \tilde{\boldsymbol{P}}\left(\omega_{n}=-1\right)=\underline{\underline{\tilde{q}}}=\frac{u-(1+r)}{u-d} .
$$

Definition 6.3. An equivalent measure $\tilde{\boldsymbol{P}}$ under which $D_{n} S_{n}$ is a martingale is called the risk neutral measure. Remark 6.4. If there are more than one risky assets, $\underline{\underline{S}}^{1}, \overline{\ldots, \underline{S}^{k}}$, then we require ${\underline{\underline{D}}{ }_{n} S_{n}^{1}}_{\underline{\underline{n}}}, \ldots, D_{n} S_{n}^{k}$ to all be martingales under the risk neutral measure \tilde{P}.

- Consider an investor that starts with X_{0} wealth, which he divides between cash and the stock.
- If he has Δ_{0} shares of stock at time 0 , then $\underline{X_{1}}=\Delta_{0} S_{1}+(1+r)\left(X_{0}-\Delta_{0} S_{0}\right)$.
- We allow the investor to trade at time 1 and hold $\overline{\bar{\Delta}_{1}}$ shares.
- Δ_{1} may be random, but must be \mathcal{J}_{1}-measurable.
- Continuing further, we see $X_{n+1}=\Delta_{n} S_{n+1}+(\underline{1+r})\left(X_{n}-\Delta_{n} S_{n}\right)$.
- Both X and Δ are adapted processes.

Theorem 6.5. The discounted wealth $D_{n} X_{n}$ is a martingale under $\tilde{\boldsymbol{P}}$.
Remark 6.6. The only thing we will use in this proof is that $D_{n} S_{n}$ is a martingale under $\tilde{\boldsymbol{P}}$. The interest rate r can be a random adapted process. It is also not special to the binomial model - it works for any model for which there is a risk neutral measure.

