hast time: Charge of measure: SZ $\oint (PMF)$ $P(A) = \Sigma \oint (\omega) \star$ $G(mnut) \widehat{P} (menr PMF)$ $\widehat{P}(A) = \Sigma \widehat{F}(\omega)$ ωEA ωEA () $P \in P$ are equir if $P(A) = 0 \iff \tilde{P}(A) = 0$ (alticly $\dot{\varphi}(\omega) = 0 \iff \tilde{\varphi}(\omega) = 0$). $(A \in \mathbb{R})$, $\rightarrow x a \neq 0 \Rightarrow X$ is matangender? $X_{n+1} = X_n + W_{n+1} + A$ tond Pruder which X is a angla

Example 5.50. Suppose now $P(\omega_n = 1) = p$ and $P(\omega_n = -1) = q = 1 - p$. Let $\underline{u}, \underline{d} > 0, r > -1$. Let $\underline{S_{n+1}(\omega)} = \underline{uS_n(\omega)}$ if $\omega_{n+1} = 1$, and $\underline{S_{n+1}(\omega)} = \underline{dS_n(\omega)}$ if $\underline{\omega_{n+1}} = -1$. Let $D_n = (1 + \underline{r})^{-\underline{n}}$ be the "discount factor". Find an equivalent measure under which D_nS_n is a martingale.

if Wm= $X_n = X(\omega) = 2 d d d \omega_n = (\omega = (\omega_1, \omega_2 - \omega_w))$ $A_m \quad S_{n+1} = X_{n+1} \quad S_n$ $\Rightarrow \sum_{n} \widetilde{E}_{n} \left(D_{n+1} S_{n+1} \right) = \left(1 + \sigma \right)^{(n+1)} \widetilde{E}_{n} \left(X_{n+1} S_{n} \right)$ $= D_{m+1} S_u E_n X_{m+1}$ (1° Sn is & was) $M_n = D_n S_n$ $= D_{n+1} S_n \widetilde{E} X_{n+1}$ (" X_{mt} is ind of En under P)

$$= D_{n+1} S_n \left(u \overrightarrow{p}_1 + d(1-\overrightarrow{p}_1) \right) \stackrel{W_{n+1}}{=} D_n S_n$$

Chave \overrightarrow{p}_1 so that $(1+\tau)^{(n+1)} S_n \left(u \overrightarrow{p}_1 + d \overrightarrow{q}_1 \right) = (1+\tau)^n S_n$
 $\Rightarrow u \overrightarrow{p}_1 + d \overrightarrow{q}_1 = 1+\tau$
Salme : $\overrightarrow{p}_1 (n-d) + d = 1+\tau$ $(\Rightarrow) \left[\overrightarrow{p}_1 = (1+\tau) - d \right]$
Jill unly give an equiv were $(\Rightarrow) d < 1+\tau < n$

6. The multi-period binomial model

Example 6.1 (Binomial model revisited). Assume $\Omega = \{\pm 1\}^N$. Let $u, d > 0, S_0 > 0$. Define $S_{n+1} = \{\underbrace{\underline{u}S_n \quad \omega_{n+1} = 1, \\ \underline{d}S_n \quad \omega_{n+1} = -1. \}$

- \underline{y} and \underline{d} are called the up and down factors respectively.
- Without loss, can assume $\underline{d} < \underline{u}$.
- Always assume no coins are deterministic: pP(ω_n = 1) > 0 and q = 1 − p = P(ω_n = −1) > 0.
 Let r > −1 be the interest rate, and D_n = (1+r)⁻ⁿ be the discount factor.

Theorem 6.2. There exists a (unique) equivalent measure \tilde{P} under which process $D_n S_n$ is a martingale if and only if d < 1 + r < u. In this case \tilde{P} is given by:

$$\tilde{\boldsymbol{P}}(\omega_n=1) = \tilde{p}_{\boldsymbol{l}} = \frac{1+r-d}{\underline{u-d}}, \qquad \tilde{\boldsymbol{P}}(\omega_n=-1) = \underline{\tilde{q}} = \frac{u-(1+r)}{\underline{u-d}}$$

Definition 6.3. An equivalent measure $\underline{\tilde{P}}$ under which $\underline{D_n S_n}$ is a martingale is called the *risk neutral measure. Remark* 6.4. If there are more than one risky assets, $\underline{S^1}, \ldots, \underline{S^k}$, then we require $\underline{D_n S_n^1}, \ldots, \underline{D_n S_n^k}$ to all be martingales under the risk neutral measure \tilde{P} .

L> Fond P alone

- Consider an investor that starts with (X_0) wealth, which he divides between cash and the stock.
- If he has $\underline{\Delta_0}$ shares of stock at time 0, then $\underline{X_1} = \underline{\Delta_0}S_1 + (1+r)(X_0 \Delta_0S_0)$.
- We allow the investor to trade at time 1 and hold $\overline{\Delta}_1$ shares.
- (Δ_1) may be random, but must be \mathcal{F}_1 -measurable.
- Continuing further, we see $X_{n+1} = \Delta_n S_{n+1} + (\underline{1+r})(X_n \Delta_n S_n).$
- Both X and Δ are adapted processes.

Theorem 6.5. The discounted wealth $D_n X_n$ is a martingale under \tilde{P} .

Remark 6.6. The only thing we will use in this proof is that $D_n S_n$ is a martingale under \tilde{P} . The interest rate r can be a random adapted process. It is also not special to the binomial model – it works for any model for which there is a risk neutral measure.