Last time: Martingales $\longrightarrow M$ ic a mg if $E_{n} M_{n+1}=M_{n}$ (Fair game)
5.5. Change of measure.

- Let $p: \Omega \rightarrow[0,1]$ be a probability mass function on Ω, and $\boldsymbol{P}(A)=\sum_{\omega \in A} p(\omega)$ be the probability measure.
- Let $\tilde{p}: \Omega \rightarrow[0,1]$ be another probability mass function, and define a second probability measure $\tilde{\boldsymbol{\boldsymbol { P }}}$ by $\tilde{\boldsymbol{P}}(A)=\sum_{\omega \in A} \tilde{p}(\omega)$.

Definition 5.47. We say \boldsymbol{P} and \tilde{P} are equivalent if for every $A \in \mathcal{F}_{N}, \underline{\boldsymbol{P}(A)}=0$ if and only if $\tilde{\overline{\boldsymbol{P}}(A)}=0$.
Remark 5.48. When Ω is finite, $\underbrace{\boldsymbol{P} \text { and } \tilde{\boldsymbol{P}}}$ are equivalent if and only if we have $p(\omega)=0 \Longleftrightarrow \tilde{p}(\omega)=0$ for all $\omega \in \Omega$. We let $\underline{\tilde{\boldsymbol{E}}, \tilde{\boldsymbol{E}}_{n}}$ denote the expectation and conditional expectations with respect to $\tilde{\boldsymbol{P}}$ respectively.

(1) X a RV. $E X=\sum_{\omega \in \Omega} X(\omega) p(\omega) \quad \begin{aligned} & \text { Expeoted vine } \\ & \text { moler } P)\end{aligned}$
(2) Sinen the nev PMF $\tilde{\phi}$, oufine $\tilde{E} X=\sum_{\omega \in \Omega} X(\omega) \tilde{\phi}(\omega)$ (Explater val mexdur)
(3) $E_{n} X=E\left(X \mid f_{n}\right)=$ cind \exp of X given f_{n}
(a) $E_{n} X$ is an ${ }_{\underline{E}}$ mans $R V$.
(b) $\forall A \in \&_{n} \sum_{\omega \in A}^{=n} E X(\omega) \phi(\omega)=\sum_{\omega \in A} X(\omega) \phi(\omega)$

(a) $\tilde{E}_{n} X$ is an \dot{f}_{n}-mas RV
(b) $\forall A E \delta_{n}, \sum_{\bar{w} \in A}-\tilde{E}_{n} X(\omega) \tilde{F}(\omega)=\sum_{\omega \in A} X(\omega) \tilde{\phi}(\omega)$

Example 5.49. Let Ω be the sample space corresponding to $\underline{\underline{N}}$ i.i.d. fair coins (heads is $\underline{1}$, tails is -1). Let $a \in \mathbb{R}$ and define $X_{n+1}(\omega)=X_{n}(\omega)+\omega_{n+1}+a$. For what a is there an equivalent measure \tilde{P} such that X is a martingale?

$$
\begin{array}{ll}
X_{0}=0, & X_{1}=X_{0}+\omega_{1}+a \\
X_{2}=X_{1}+\omega_{2}+a
\end{array} \quad(a \in R \quad \text { same cont). }
$$

Q: Is X a ma? (Fair coin X is a mg $\Leftrightarrow a=0$

$$
\begin{aligned}
& E_{n} X_{n+1}=E_{n}\left(X_{n}+\omega_{n+1}+a\right)=X_{n}+\underbrace{E_{n} \omega_{n+1}+E_{n} a}_{n+1} \\
& E_{n} X_{n+1}=X_{n}+0+\underline{a} \quad E_{n+1}=0 \\
&\left(\omega_{n+1} \text { is ind en of } f_{n}\right)
\end{aligned}
$$

Goal: Find \widetilde{P} so that $p \& \widetilde{P}$ ame equin \& X is a mag mader \widetilde{P}.
Let \tilde{p} be a PMF (will find \tilde{p} shatly)

$$
\tilde{E}_{n} X_{n+1}=\tilde{E}_{n}\left(X_{n}+\omega_{n+1}+a\right)=X_{n}+\tilde{E}_{V_{n}}^{\omega_{n+1}}+a
$$

Nal to chice $\tilde{\phi}$ o that $\tilde{\mathbb{E}}_{n} \omega_{n+1}+a=0$
Sey we chrote \tilde{p} so that the coins ane iid \&

$$
\tilde{p}\left(\omega_{n}=1\right)=\tilde{\phi}_{1} \quad \& \tilde{p}\left(\omega_{n}=-1\right)=\tilde{q}_{1}=1-\tilde{p}_{1}
$$

Red $B_{o x} \rightarrow \tilde{E}_{n} \omega_{n+1}+a=0 \Leftrightarrow \tilde{E} \omega_{m+1}+\underline{\underline{a}}=\tilde{p}_{1} 1+\left(1-\tilde{p}_{1}\right)(-1)+a$ $=0$

$$
\Leftrightarrow 2 p_{1}-1+a=0
$$

$$
\Leftrightarrow \tilde{\phi}_{1}=\frac{1-a}{2}
$$

-1)wed \tilde{p} to he a PMF
(2) red \widetilde{P} equir to P

$$
\text { Nole } \tilde{\tilde{p}_{1} \in(0,1)} \Leftrightarrow a \in(-1,1)
$$

 coms ap hads sith puod $\widetilde{R}=\frac{1-k}{2} \in(0$, Thn X is a ang mader \widehat{P} !

$$
\begin{aligned}
& (\tilde{p}(\omega)=0 \Leftrightarrow \tilde{\phi}(\omega)=0)
\end{aligned}
$$

Example 5.50. Suppose now $\boldsymbol{P}\left(\omega_{n}=1\right)=p$ and $\boldsymbol{P}\left(\omega_{n}=-1\right)=q=1-p$. Let $u, d>0, r>-1$. Let $S_{n+1}(\omega)=u S_{n}(\omega)$ if $\omega_{n+1}=1$, and $S_{n+1}(\omega)=d S_{n}(\omega)$ if $\omega_{n+1}=-1$. Let $D_{n}=(1+r)^{-n}$ be the "discount factor". Find an equivalent measure under which $D_{n} S_{n}$ is a martingale.

