a think of X = RV at time n 5.4. Martingales. **Definition 5.30.** A stochastic process is a collection of random variables $X_{0, 2}, X_{1, 2}, \dots, X_{N}$. **Definition 5.31.** A stochastic process is *adapted* if X_n is \mathcal{F}_n -measurable for all n. (Non-anticipating.) Question 5.32. Is $X_n(\omega) = \sum_{i \leq n} \omega_i \text{ adapted? YES} \left(\omega_i \in \pm 1 \quad (ih \cos \theta_s) \right)$ **Question 5.33.** Is $X_n(\omega) = \omega_n$ adapted? Is $X_n(\omega) = 15$ adapted? Is $X_n(\omega) = \omega_{15}$ adapted? Is $X_n(\omega) = \omega_{N-i}$ adapted? Remark 5.34. We will always model the price of assets by adapted processes. We will also only consider trading strategies which are adapted. $\omega = (\omega_1, \omega_2, \dots, \omega_N)$ YEC. YER * X, is & - meas, & = 36, 513 SOA RV is & means as it is comet. (2) Cametale and \$2-meas \$1 20. (3) Xn adapted ⇒ Xn is &n meas Xn. Sime En ⊆ Em VM≥n⇒

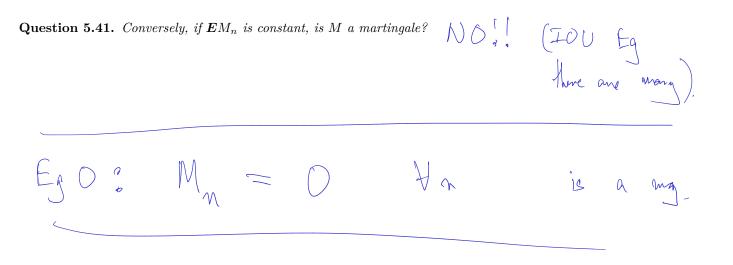
Xy is \$7m-means \$7m > 4

Q: X = W 5 Yn. Ic X adapted & NO

Example 5.35 (Money market). Let $Y_0 = Y_0(\omega) = a \in \mathbb{R}$. Define $Y_{n+1} = (1+r)Y_n$. (Here r is the interest rate.) (All ted.) Example 5.36. Suppose $\Omega = \{\pm 1\}^N \cong \{H, T\}^N \cong \{1, 2\}^N$. Let $S_0 = a \in \mathbb{R}$. Define $S_{n+1}(\omega) = \begin{cases} uS_n(\omega) & \omega_{n+1} = 1, \\ dS_n(\omega) & \omega_{n+1} = -1. \end{cases}$ Is S_n adapted? (Used to model stock price in the multi-period Binomial model.)

Definition 5.37. We say an adapted process X_n is a martingale if $E_n X_{n+1} = X_n$. (Recall $E_n Y = E(Y | \mathcal{F}_n)$.) Remark 5.38. Intuition: A martingale is a "fair game". Question 5.39. If $m \leq n$, is $E_m X_n = X_m$? Best approx of X n+1 given $m \leq n : E_m \chi_n = \chi_m^2$ the first n - die valls 1-20/1 Mg $E_{M}X_{M+2} =$ $E_{n}(X_{n+1})$ MA

Question 5.40. If M is a martingale does
$$\underline{EM_n}$$
 change with n ?
Know $E_n M_{n+1} = M_n$ ($\underline{\leftarrow}$) $\forall m \leq u$, $E_m M_n = M_m$)
($lainm$; $\underline{E} M_{n+1} = \underline{E} M_n$ (\underline{E} not \underline{E}_n).
Pf : $\underline{E} M_{n+1} = \underline{E} M_n$ (\underline{E} not \underline{E}_n).
Pf : $\underline{E} M_{n+1} = \underline{E} M_n$ (\underline{E} not \underline{E}_n).
Pf : $\underline{E} M_{n+1} = \underline{E} M_n$ ($\underline{E} - \underline{E} M_n$ ($\underline{E} - \underline{E} M_n$).
Pf : $\underline{E} M_{n+1} = \underline{E} X(u) p(u) = \underline{E} X(u) p(u)$ $\underline{E} (\underline{E} X) = \underline{E} X(u) p(u)$
 $\underline{\Delta} \in \underline{E}_n$, $\underline{N} = \underline{A} = \underline{A}$. $\Rightarrow \underbrace{\sum_{u \in \underline{A}} \underline{E} (\underline{M}) p(u)}_{u \in \underline{A}} = \underline{E} X(u) p(u)$



Example 5.42. Unbiased random walks are martingales. Avar Wi -> outcome af a fair coin S М $\omega = (\omega_1, \dots, \omega_N) \leftarrow N$ it d for come. $X_{n+1}(\omega) = X_n(\omega) + \omega_{n+1}$ $\sum \frac{Claim:}{Claim:} X_n \text{ is a mg},$ $\lambda = A E$ Wk = a + 2

 $= X_n + E W_{n+1}$ ("X_n is $\xi_n - means)$ (°: Wun ind af Fn)

 $= X_{n} + O$ RED

Example 5.43. More generally, if $M_{n+1} - M_n$ is mean 0 and independent of \mathcal{F}_n , then M is a martingale. (indep inevents) Question 5.44. If M is a martingale, must $M_{n+1} - M_n$ be independent of \mathcal{F}_n ? NO! M mg => Mm+1 indep Assume $M_{n+1} - M_n$ is ind of $\mathcal{E}_n \longrightarrow M$ is a rug. $\mathcal{E} \in (M_{n+1} - M_n) = 0$ $f_{f'} \in E_{\mathcal{M}} M_{\mathcal{M}+1} = E_{\mathcal{M}} (M_{\mathcal{M}+1} - M_{\mathcal{M}} + M_{\mathcal{M}}) = E_{\mathcal{M}} (M_{\mathcal{M}+1} - M_{\mathcal{M}}) + E_{\mathcal{M}} M_{\mathcal{M}}$ Markor : $E_{\mathcal{M}}(X_{\mathcal{M}}) = \mathscr{K}(X_{\mathcal{M}})$ $(10 \text{ ind}) \quad E(M_{NH} - M_{N})$