Last time's Could Exp proof. $E_n X = E(X | E_n)$ $(E_4) \bigcirc E_n X \rightarrow (a) E_n - mean RV 2 \bigcirc \forall A \in E_n, Z(a) \neq (a) = Z X(a) \neq (a)$ $\rightarrow (E_1 \land (X + a \land Y)) = E_n(X) + x \in E_n(Y)$ $(X \land RV' \in X \land R \in R)$ $(X \land RV' \in X \land R \in R)$ (on HW) $-(3)(7_{0}) \quad \underline{M} \leq \underline{M} \Rightarrow E_{\underline{M}}(\underline{E}_{\underline{M}}\underline{X}) = E_{\underline{M}}(\underline{X})$ (F) If X is \mathcal{E}_n meas \mathcal{A} Y is anything the $\mathcal{E}_n(XY) = \chi(\mathcal{E}_n)$

Theorem 5.28. If X is independent of \mathcal{F}_n then $\underline{\mathbf{E}}_n X = \underline{\mathbf{E}} X \left(\mathcal{M} \right)$ X is indep of the first a die ralls $(F_X is F_n - meas, I'm E_n X = X)$) Def: We say X is ind of En if YAEEn the events A & EXEBS are ind. & BGR IXEBI 2 some event events det fran n die valle $w | X(w) \in B{$ n S VaeR VAEF Rent: Storte a () (=) the events A & J X = 22 are ind

In: X ind of
$$\mathcal{E}_n \Rightarrow \mathcal{F}_n X = \mathcal{E}_n X$$
 (almost swely)
 $f_n - mars RV$ number
i.e. $\mathcal{E}_n X$ is the canst $\mathcal{E}_n X$ almost swely!
 $\mathcal{F}_n X - \mathcal{F}_n \neq X$ is
ind of \mathcal{E}_n
 $\mathcal{F}_n Y = \mathcal{F}_n X$ is independent $\mathcal{F}_n X$ almost swely!
 $\mathcal{F}_n Y = \mathcal{F}_n X$ is independent $\mathcal{F}_n X$ almost swely!
 $\mathcal{F}_n Y = \mathcal{F}_n X$ is independent $\mathcal{F}_n X = \mathcal{F}_n X$ is
 $\mathcal{F}_n X = \mathcal{F}_n X$ is independent $\mathcal{F}_n X = \mathcal{F}_n X$ is
 $\mathcal{F}_n X = \mathcal{F}_n X$ is independent $\mathcal{F}_n X = \mathcal{F}_n X$ is
 $\mathcal{F}_n X = \mathcal{F}_n X$ is independent $\mathcal{F}_n X = \mathcal{F}_n X$ is
 $\mathcal{F}_n X = \mathcal{F}_n X$ is independent $\mathcal{F}_n X = \mathcal{F}_n X$ is
 $\mathcal{F}_n X = \mathcal{F}_n X$ is independent $\mathcal{F}_n X = \mathcal{F}_n X$ is
 $\mathcal{F}_n X = \mathcal{F}_n X$ is independent $\mathcal{F}_n X = \mathcal{F}_n X$ is
 $\mathcal{F}_n X = \mathcal{F}_n X$ is independent $\mathcal{F}_n X = \mathcal{F}_n X$ is
 $\mathcal{F}_n X = \mathcal{F}_n X$ is independent $\mathcal{F}_n X = \mathcal{F}_n X$ is
 $\mathcal{F}_n X = \mathcal{F}_n X$ is independent $\mathcal{F}_n X = \mathcal{F}_n X$ is
 $\mathcal{F}_n X = \mathcal{F}_n X$ is independent $\mathcal{F}_n X$ is
 $\mathcal{F}_n X = \mathcal{F}_n X$ is independent $\mathcal{F}_n X$ is
 $\mathcal{F}_n X = \mathcal{F}_n X$ is independent $\mathcal{F}_n X$ is independent $\mathcal{F}_n X$ is
 $\mathcal{F}_n X = \mathcal{F}_n X$ is independent $\mathcal{F}_n X$ is independent $\mathcal{F}_n X$ is
 $\mathcal{F}_n X = \mathcal{F}_n X$ is independent $\mathcal{F}_n X$ is independent $\mathcal{F}_n X$ is
 $\mathcal{F}_n X = \mathcal{F}_n X$ is independent $\mathcal{F}_n X$ is independent $\mathcal{$

Then $Z(\omega) \neq (\omega) = \sum_{k=1}^{m} x_k P(\xi) = x_k^2$ A) M $n_k P(X=n_k) P(A)$ ("X is ind as F_M) 12=1 $-\pi_k P(X=\pi_k) = P(A)(EX)$ = P(A)2 K=1 FX $= \geq p(w) \in X$

Theorem 5.29 (Independence lemma). If X is independent of \mathcal{F}_n and Y is \mathcal{F}_n -measurable, and $f: \mathbb{R} \to \mathbb{R}$ is a function then

$$\boldsymbol{E}_{n}f(X,Y) = \sum_{i=1}^{m} f(x_{i},Y)\boldsymbol{P}(X=x_{i}), \quad \text{where } \{x_{1},\ldots,x_{m}\} = X(\Omega).$$