Question 4.3. What's an N period version of this model? Do we have the same formulae?

$$
\left\{\begin{array}{l}
Q_{1} \mid N_{0} \text { cant }{ }_{2}^{7} \\
Q_{2}: P_{\text {vie }} C_{e c}
\end{array} \quad(d<1+r<n)\right.
$$

\ldots Q3: American potions
Can exarise at min time
5. Probability spaces, in our context

Notation
Let $N \in \mathbb{N}$ be large (typically the maturity time of financial securities).
Definition 5.1. The Sample space is the set $\Omega=\left\{\left(\omega_{1}, \ldots, \omega_{N}\right) \mid\right.$ each ω_{i} represents the outcome of a condos. $\}$
\triangleright E.g. $\omega_{i} \in\{H, T\}$, or $\underline{\omega}_{i} \in\{ \pm 1\}$.
\triangleright Coins don't have to be identical: Pick $M_{1}, M_{2}, \ldots, \in \mathbb{N}$, and can require $\omega_{i} \in\left\{1, \ldots, M_{i}\right\}$.
Definition 5.2. A sample point is a point $\omega=\left(\omega_{1}, \ldots, \omega_{N}\right) \in \Omega \in \mathcal{A} \mathcal{O}_{\text {. }}$
Definition 5.3. A probability mass function is a function $p: \Omega \rightarrow[0,1]$ such that $\sum_{\omega \in \Omega} p(\omega)=1$.
Definition 5.4. An event is a subset of Ω. Define $\boldsymbol{P}(A)=\sum_{\omega \in A} p(\omega)$.

$$
\phi(\omega)=\text { Prat af }
$$

ω
occraving

(cement)
5.1. Independence.

Definition 5.5. Two events are independent if $\boldsymbol{P}(A \cap B)=\boldsymbol{P}(A) \boldsymbol{P}(B)$.
Question 5.6. What does it mean for the events A_{1}, \ldots, A_{n} to be independent?

given A occurred

Def: A_{1}, A_{2}, A_{3} ane ind $f P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P(A) P\left(A_{2}\right) P\left(A_{3}\right)$
$A N D \quad P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \& P\left(A_{2} \cap A_{3}\right) \phi=P\left(A_{2}\right) P\left(A_{3}\right)$ $P\left(A_{1} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{3}\right)$
Ref: $A_{1}, \cdots A_{N}$ ane ind if for ann sut collection $\left\{A_{i_{1}}, A_{i_{2}}, \cdots A_{i_{m}}\right\}$, we have $P\left(\bigcap_{j=1}^{m} A_{i_{j}}\right)=\prod_{j=1}^{m} P\binom{A_{i j}}{m_{j}}$

Definition 5.7. A random variable is a function $X: \Omega \rightarrow \mathbb{R}$. (hater will allows $X: \Omega \rightarrow \mathbb{R}^{d}$).
Question 5.8. What is the fandom variable corresponding to the outcome of the $n^{\text {th }}$ coin toss?

$$
\Omega=\{1,2, \cdots 6\}^{N}, \quad(N \in N) \quad \omega=\left(\omega_{1}, \ldots \omega_{N}\right) \& \operatorname{edn} \omega_{i} \in\{1, \cdots 6\} \text {. }
$$

$X_{2}=R V$ cavosandig to wall of the seed die.

$$
E_{f}: \begin{aligned}
& X_{2}(\omega)=\omega_{2} \\
& =\underline{2}
\end{aligned}
$$

(hame $\left.\underset{\sim}{\omega}=\left(\omega_{1}, \omega_{2}, \cdots \omega_{N}\right)\right)$
w
ω

Definition 5.9. The expectation of a random variable X is $\boldsymbol{E} X=\sum X(\omega) p(\omega)=\sum x_{i} \boldsymbol{P}\left(X=x_{i}\right)$.
Definition 5.10. The $\overline{\text { variance is }} \boldsymbol{E}(X-\boldsymbol{E} X)^{2}=\boldsymbol{E} X^{2}-\overline{(\boldsymbol{E} X)^{2}}$.
$X_{\text {is }}$ a $R \cdot V_{1} \quad(X: \Omega \rightarrow \mathbb{R})$
$E X=$ aroge unter of $X=\sum_{\omega \in \Omega} X(\omega) p(\omega)=\sum_{i=1}^{M} x_{i} P\left(X=x_{i}\right)$
Ω forle $\Rightarrow \underline{X}(\underline{\Omega})=$ ana of X is fonke $=\left\{x_{1}, x_{2}, \cdots x_{M}\right\}$. $\left\{\omega \in \Omega\left(X(\omega)=x_{i}\right\} \subseteq \Omega^{8}(\right.$ sance enat $)$

Nation: $\left\{X=x_{i}\right\}$ 是 $\left\{\omega \in \Omega \mid X(\omega)=x_{i}\right\}=X^{-1}\left(x_{i}\right)$

Definition 5.11. Two random variables are independent if $\boldsymbol{P}(\underline{X}=\underline{x} \underline{Y}=\underline{y})=\boldsymbol{P}(X=x) \boldsymbol{P}(Y=y)$ for all $x, y \in \mathbb{R}$.
Question 5.12. What does it mean for the random variables X_{1}, \ldots, X_{n} to be independent? Question 5.13. Are uncorrelated random variables independent?

$$
\begin{aligned}
& \{X=r\}=\{\omega \in \Omega \mid X(\omega)=x\} \\
& \{Y=\eta\}=\{\omega \in \Omega \mid Y(\omega)=\eta\} \\
& P\left(X_{1}=x_{1} \& X_{2}=x_{2} \ldots X_{n}=x_{n}\right)=\prod_{i=1} P\left(X_{i}=x_{i}\right) \quad \forall x_{i} \&
\end{aligned}
$$

Pf $\forall x_{1}$, the evens $\left\{X_{1}=x_{1}\right\},\left\{X_{2}=x_{2}\right\} \ldots\left\{X_{n}=x_{n}\right\}$ ane all ind (lave $\left.P\left(x_{1}=x_{1} \& x_{2}=x_{2}\right)=P\left(x_{1}=x_{1}\right) P\left(x_{2}=x_{2}\right) \quad d c\right)$

