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1. Preface.
These are the slides I used while teaching this course in 2020. I projected them (spaced out) in class, and filled in the proofs

by writing over them with a tablet. Both the annotated version of these slides with handwritten proofs, and the compactified
un-annotated version can be found on the class website. The LATEXsource of these slides is also available on git.



1. Syllabus Overview
• Class website and full syllabus: http://www.math.cmu.edu/~gautam/sj/teaching/2020-21/370-dtime-finance
• TA’s: Lily Chen <huipingc@andrew.cmu.edu>, Jose Olvera <joseluim@andrew.cmu.edu>.
• Homework Due: Every Wednesday, before class (on Gradescope)
• Midterms: Wed Sep 30, 5th week, and Wed Nov 4th, 10th week (self proctored, can be taken any time)
• Zoom lectures:

� Please enable video. (It helps me pace lectures).
� Mute your mic when you’re not speaking. Use headphones if possible. Consent to be recorded.
� If I get disconnected, check your email for instructions.

• Homework:
� Good quality scans please! Use a scanning app, and not simply take photos. (I use Adobe Scan.)
� 20% penalty if turned in within an hour of the deadline. 100% penalty after that.
� Bottom 20% homework is dropped from your grade (personal emergencies, other deadlines, etc.).
� Collaboration is encouraged. Homework is not a test – ensure you learn from doing the homework.
� You must write solutions independently, and can only turn in solutions you fully understand.

• Exams:
� Can be taken at any time on the exam day. Open book. Use of internet allowed.
� Collaboration is forbidden. You may not seek or receive assistance from other people. (Can search forums; but may not post.)
� Self proctored: Zoom call (invite me). Record yourself, and your screen to the cloud.
� Share the recording link; also download a copy and upload it to the designated location immediately after turning in your exam.



• Academic Integrity
� Zero tolerance for violations (automatic R).
� Violations include:

– Not writing up solutions independently and/or plagiarizing solutions
– Turning in solutions you do not understand.
– Seeking, receiving or providing assistance during an exam.
– Discussing the exam on the exam day (24h). Even if you have finished the exam, others may be taking it.

� All violations will be reported to the university, and they may impose additional penalties.
• Grading: 30% homework, 20% each midterm, 30% final.



2. Replication, and Arbitrage Free Pricing
• Start with a financial market consisting of traded assets (stocks, bonds, money market, options, etc.)
• We model the price of these assets through random variables (stochastic processes).
• No Arbitrage Assumption:

� In order to make money, you have to take risk. (Can’t make something out of nothing.)
� There doesn’t exist a trading strategy with X0 = 0, Xn � 0 and P (Xn > 0) > 0.

• Now consider a non-traded asset Y (e.g. an option). How do you price it?
• Arbitrage free price: V0 is the arbitrage free price of Y , if given the opportunity to trade Y at price V0, the market remains

arbitrage free.



• How do you compute the arbitrage free price? Replication:
� Say the non-traded asset pays VN at time N (e.g. call options).
� Say you can replicate the payoff through a trading strategy X0, . . . , XN = VN (using only traded assets).
� Then the arbitrage free price is uniquely determined, and must be X0.

Question 2.1. Is the arbitrage free price always unique?



Theorem 2.2. The arbitrage free price is unique if and only if there is a replicating strategy! In this case, the arbitrage free price is
exactly the initial capital of the replicating strategy.

Proof. We already proved that if a replicating strategy exists then the arbitrage free price is unique. The other direction is harder,
and will be done later. �
Question 2.3. If a replicating strategy exists, must it be unique?





Question 3.4. Consider a financial market with a money market account with interest rate r, and a stock. Let K > 0. A forward
contract requires the holder to buy the stock at price K at maturity time N . What is the arbitrage free price at time 0?



4. Binomial model (one period)
Say we have access to a money market account with interest rate r. The binomial model dictates that the stock price varies as

follows. Let p ∈ (0, 1), q = 1 − p, 0 < d < u (up and down factors). Flip a coin that lands heads with probability p, and tails with
probability q. When the coin lands heads, the stock price changes by the factor u, and when it lands tails it changes by the factor p.

Question 4.1. When is there arbitrage in this market?



Question 4.2. If a security pays V1 at time 1, what is the arbitrage free price at time 0. (V1 can depend on whether the coin flip is
heads or tails).





Question 4.3. What’s an N period version of this model? Do we have the same formulae?



Question 4.3. What’s an N period version of this model? Do we have the same formulae?



5. Probability spaces, in our context
Let N ∈ N be large (typically the maturity time of financial securities).

Definition 5.1. The Sample space is the set Ω = {(ω1, . . . , ωN ) | each ωi represents the outcome of a coin toss.}
� E.g. ωi ∈ {H, T}, or ωi ∈ {±1}.
� Coins don’t have to be identical: Pick M1, M2, . . . , ∈ N, and can require ωi ∈ {1, . . . , Mi}.

Definition 5.2. A sample point is a point ω = (ω1, . . . , ωN ) ∈ Ω ∈ Ω.

Definition 5.3. A probability mass function is a function p : Ω → [0, 1] such that
�

ω∈Ω p(ω) = 1.

Definition 5.4. An event is a subset of Ω. Define P (A) =
�

ω∈A p(ω).



5.1. Independence.

Definition 5.5. Two events are independent if P (A ∩ B) = P (A)P (B).

Question 5.6. What does it mean for the events A1, . . . , An to be independent?





Definition 5.7. A random variable is a function X : Ω → R.

Question 5.8. What is the random variable corresponding to the outcome of the nth coin toss?



Definition 5.9. The expectation of a random variable X is EX =
�

X(ω)p(ω) =
�

xiP (X = xi).

Definition 5.10. The variance is E(X − EX)2 = EX2 − (EX)2.



Definition 5.11. Two random variables are independent if P (X = x, Y = y) = P (X = x)P (Y = y) for all x, y ∈ R.

Question 5.12. What does it mean for the random variables X1, . . . , Xn to be independent?

Question 5.13. Are uncorrelated random variables independent?







Definition 5.11. Two random variables are independent if P (X = x, Y = y) = P (X = x)P (Y = y) for all x, y ∈ R.

Question 5.12. What does it mean for the random variables X1, . . . , Xn to be independent?

Question 5.13. Are uncorrelated random variables independent?



Theorem 5.14. The random variables X1, . . . , Xn are independent if and only if for all x1, . . . , xn ∈ R we have
P (X1 = x1, X2 = x2, . . . , Xn = xn) = P (X1 = x1)P (X2 = x2) · · · P (Xn = xn) .

Corollary 5.15. Suppose for simplicity all coin tosses have M outcomes (i.e. ωi ∈ {1, . . . , M}). Let p be a probability mass function.
The coin tosses are all independent, if and only if, there exists functions p1, . . . , pN such that p(ω) = p1(ω1)p2(ω2) · · · pN (ωN ).





5.2. Filtrations and adapted processes.
• Let N ∈ N, d1, . . . , dN ∈ N, Ω = {1, . . . , d1} × {1, . . . , dn} × · · · × {1, . . . , dN }.
• That is Ω = {ω | ω = (ω1, . . . , ωN ), ωi ∈ {1, . . . , di}}.
• dn = 2 for all n corresponds to flipping a two sided coin at every time step.

Definition 5.16. We define a filtration on Ω as follows:
� F0 = {∅, Ω}.
� F1 = all events that can be described by only the first coin toss (die roll). E.g. A = {ω | ω1 = H} ∈ F1.
� Fn = all events that can be described by only the first n coin tosses.

Question 5.17. Let Ω = {H, T}3 ∼= {1, 2}3. What are F0, . . . , F3?









Definition 5.18. We say a random variable X is Fn-measurable if X(ω) only depends on ω1, . . . , ωn.
� Equivalently, for any B ⊆ R, the event {X ∈ B} ∈ Fn.

Question 5.19. Let X(ω) def= ω1 − 10ω2. For what n is Fn-measurable?









5.3. Conditional expectation.

Definition 5.20. Let X be a random variable, and n � N . We define E(X | Fn) = EnX to be the random variable given by

EnX(ω) =

�

ω�∈Πn(ω)

p(ω�)X(ω�)

�

ω�Πn(ω)

p(ω�)
, where Πn(ω) = {ω� ∈ Ω | ω�

1 = ω1, . . . , ω�
n = ωn}

Remark 5.21. EnX is the “best approximation” of X given only the first n coin tosses.

Remark 5.22. The above formula does not generalize well to infinite probability spaces. We will develop a definition that does
generalize; after we have that definition we will never ever ever use this formula.





Remark 5.23. The conditional expectation EnX defined by the above formula satisfies the following two properties:
(1) EnX is an Fn-measurable random variable.
(2) For every A ∈ Fn,

�

ω∈A

EnX(ω)p(ω) =
�

ω∈A

X(ω)p(ω).





Proof of (2):
(1) If A ∈ Fn, then there exist ω1, . . . , ωk ∈ Ω such that A is the disjoint union of Πn(ω1), . . . , Πn(ωk).



(2) For any ω ∈ Ω,
�

ω�∈Πn(ω)

EnX(ω�)p(ω�) =
�

ω�∈Πn(ω)

X(ω�)p(ω�)



(3) Hence
�

ω∈A

EnX(ω)p(ω) =
k�

i=1

�

ω∈Πn(ωi)

EnX(ω)p(ω) =
k�

i=1

�

ω∈Πn(ωi)

X(ω)p(ω) =
�

ω∈A

X(ω)p(ω) .



Definition 5.24. Let X be a random variable, and n � N . We define the conditional expectation of X given Fn, denoted by EnX,
or E(X | Fn), to be the unique random variable such that:

(1) EnX is a Fn-measurable random variable.
(2) For every A ⊆ Fn, we have

�
ω∈A EnX(ω)p(ω) =

�
ω∈A X(ω)p(ω).

Remark 5.25. This is the definition that generalizes to the continuous case. All properties we develop on conditional expectations
will only use the above definition, and not the explicit formula.



Remark 5.26 (Uniqueness). If Y and Z are two Fn-measurable random variables such that
�

ω∈A Y (ω)p(ω) =
�

ω∈A Z(ω)p(ω) for
every A ∈ Fn, then we must have P (Y = Z) = 1.



Definition 5.24. Let X be a random variable, and n � N . We define the conditional expectation of X given Fn, denoted by EnX,
or E(X | Fn), to be the unique random variable such that:

(1) EnX is a Fn-measurable random variable.
(2) For every A ⊆ Fn, we have

�
ω∈A EnX(ω)p(ω) =

�
ω∈A X(ω)p(ω).

Remark 5.25. This is the definition that generalizes to the continuous case. All properties we develop on conditional expectations
will only use the above definition, and not the explicit formula.



Remark 5.26 (Uniqueness). If Y and Z are two Fn-measurable random variables such that
�

ω∈A Y (ω)p(ω) =
�

ω∈A Z(ω)p(ω) for
every A ∈ Fn, then we must have P (Y = Z) = 1.



Theorem 5.27. (1) If X, Y are two random variables and α ∈ R, then En(X + αY ) = EnX + αEnY . (On homework).
(2) If m � n, then Em(EnX) = EmX.



(3) If X is Fn measurable, and Y is any random variable, then En(XY ) = XEnY .





Theorem 5.28. If X is independent of Fn then EnX = EX.





Theorem 5.28. If X is independent of Fn then EnX = EX.









Theorem 5.29 (Independence lemma). If X is independent of Fn and Y is Fn-measurable, and f : R → R is a function then

Enf(X, Y ) =
m�

i=1
f(xi, Y )P (X = xi) , where {x1, . . . , xm} = X(Ω) .



5.4. Martingales.

Definition 5.30. A stochastic process is a collection of random variables X0, X1, . . . , XN .

Definition 5.31. A stochastic process is adapted if Xn is Fn-measurable for all n. (Non-anticipating.)

Question 5.32. Is Xn(ω) =
�

i�n ωi adapted?

Question 5.33. Is Xn(ω) = ωn adapted? Is Xn(ω) = 15 adapted? Is Xn(ω) = ω15 adapted? Is Xn(ω) = ωN−i adapted?

Remark 5.34. We will always model the price of assets by adapted processes. We will also only consider trading strategies which are
adapted.





Example 5.35 (Money market). Let Y0 = Y0(ω) = a ∈ R. Define Yn+1 = (1 + r)Yn. (Here r is the interest rate.)

Example 5.36. Suppose Ω = {±1}N ∼= {H, T}N ∼= {1, 2}N . Let S0 = a ∈ R. Define Sn+1(ω) =
�

uSn(ω) ωn+1 = 1 ,

dSn(ω) ωn+1 = −1 .

Is Sn adapted? (Used to model stock price in the multi-period Binomial model.)



Definition 5.37. We say an adapted process Xn is a martingale if EnXn+1 = Xn. (Recall EnY = E(Y | Fn).)

Remark 5.38. Intuition: A martingale is a “fair game”.

Question 5.39. If m � n, is EmXn = Xm?



Question 5.40. If M is a martingale does EMn change with n?



Question 5.41. Conversely, if EMn is constant, is M a martingale?



Example 5.42. Unbiased random walks are martingales.





Example 5.43. More generally, if Mn+1 − Mn is mean 0 and independent of Fn, then M is a martingale.

Question 5.44. If M is a martingale, must Mn+1 − Mn be independent of Fn?





5.5. Change of measure.
• Let p : Ω → [0, 1] be a probability mass function on Ω, and P (A) =

�
ω∈A p(ω) be the probability measure.

• Let p̃ : Ω → [0, 1] be another probability mass function, and define a second probability measure P̃ by P̃ (A) =
�

ω∈A p̃(ω).

Definition 5.47. We say P and P̃ are equivalent if for every A ∈ FN , P (A) = 0 if and only if P̃ (A) = 0.

Remark 5.48. When Ω is finite, P and P̃ are equivalent if and only if we have p(ω) = 0 ⇐⇒ p̃(ω) = 0 for all ω ∈ Ω.

We let Ẽ, Ẽn denote the expectation and conditional expectations with respect to P̃ respectively.





Example 5.49. Let Ω be the sample space corresponding to N i.i.d. fair coins (heads is 1, tails is −1). Let a ∈ R and define
Xn+1(ω) = Xn(ω) + ωn+1 + a. For what a is there an equivalent measure P̃ such that X is a martingale?







Example 5.50. Suppose now P (ωn = 1) = p and P (ωn = −1) = q = 1 − p. Let u, d > 0, r > −1. Let Sn+1(ω) = uSn(ω) if ωn+1 = 1,
and Sn+1(ω) = dSn(ω) if ωn+1 = −1. Let Dn = (1 + r)−n be the “discount factor”. Find an equivalent measure under which DnSn

is a martingale.





Example 5.50. Suppose now P (ωn = 1) = p and P (ωn = −1) = q = 1 − p. Let u, d > 0, r > −1. Let Sn+1(ω) = uSn(ω) if ωn+1 = 1,
and Sn+1(ω) = dSn(ω) if ωn+1 = −1. Let Dn = (1 + r)−n be the “discount factor”. Find an equivalent measure under which DnSn

is a martingale.







6. The multi-period binomial model

Example 6.1 (Binomial model revisited). Assume Ω = {±1}N . Let u, d > 0, S0 > 0. Define Sn+1 =
�

uSn ωn+1 = 1 ,

dSn ωn+1 = −1 .

• u and d are called the up and down factors respectively.
• Without loss, can assume d < u.
• Always assume no coins are deterministic: pP (ωn = 1) > 0 and q = 1 − p = P (ωn = −1) > 0.
• Let r > −1 be the interest rate, and Dn = (1 + r)−n be the discount factor.

Theorem 6.2. There exists a (unique) equivalent measure P̃ under which process DnSn is a martingale if and only if d < 1 + r < u.
In this case P̃ is given by:

P̃ (ωn = 1) = p̃ = 1 + r − d

u − d
, P̃ (ωn = −1) = q̃ = u − (1 + r)

u − d
.

Definition 6.3. An equivalent measure P̃ under which DnSn is a martingale is called the risk neutral measure.

Remark 6.4. If there are more than one risky assets, S1, . . . , Sk, then we require DnS1
n, . . . , DnSk

n to all be martingales under the
risk neutral measure P̃ .



• Consider an investor that starts with X0 wealth, which he divides between cash and the stock.
• If he has Δ0 shares of stock at time 0, then X1 = Δ0S1 + (1 + r)(X0 − Δ0S0).
• We allow the investor to trade at time 1 and hold Δ1 shares.
• Δ1 may be random, but must be F1-measurable.
• Continuing further, we see Xn+1 = ΔnSn+1 + (1 + r)(Xn − ΔnSn).
• Both X and Δ are adapted processes.

Theorem 6.5. The discounted wealth DnXn is a martingale under P̃ .

Remark 6.6. The only thing we will use in this proof is that DnSn is a martingale under P̃ . The interest rate r can be a random
adapted process. It is also not special to the binomial model – it works for any model for which there is a risk neutral measure.



6. The multi-period binomial model
• In the multi-period binomial model we assume Ω = {±1}N corresponds to a probability space with N i.i.d. coins.

• Let u, d > 0, S0 > 0, and define Sn+1 =
�

uSn ωn+1 = 1 ,

dSn ωn+1 = −1 .

• u and d are called the up and down factors respectively.
• Without loss, can assume d < u.
• Always assume no coins are deterministic: p1 = P (ωn = 1) > 0 and q1 = 1 − p1 = P (ωn = −1) > 0.
• We have access to a bank with interest rate r > −1.
• Dn = (1 + r)−n be the discount factor ($1 at time n is worth $Dn at time 0.)

Theorem 6.1. There exists a (unique) equivalent measure P̃ under which process DnSn is a martingale if and only if d < 1 + r < u.
In this case P̃ is the probability measure obtained by tossing N i.i.d. coins with

P̃ (ωn = 1) = p̃1 = 1 + r − d

u − d
, P̃ (ωn = −1) = q̃1 = u − (1 + r)

u − d
.

Definition 6.2. An equivalent measure P̃ under which DnSn is a martingale is called the risk neutral measure.

Remark 6.3. If there are more than one risky assets, S1, . . . , Sk, then we require DnS1
n, . . . , DnSk

n to all be martingales under the
risk neutral measure P̃ .



• Consider an investor that starts with X0 wealth, which he divides between cash and the stock.
• If he has Δ0 shares of stock at time 0, then X1 = Δ0S1 + (1 + r)(X0 − Δ0S0).
• We allow the investor to trade at time 1 and hold Δ1 shares.
• Δ1 may be random, but must be F1-measurable.
• Continuing further, we see Xn+1 = ΔnSn+1 + (1 + r)(Xn − ΔnSn).
• Both X and Δ are adapted processes.

Definition 6.4. A self-financing portfolio is a portfolio whose wealth evolves according to
Xn+1 = ΔnSn+1 + (1 + r)(Xn − ΔnSn) ,

for some adapted process Δn.

Theorem 6.5. Let d < 1 + r < u, and P̃ be the risk neutral measure, and Xn represent the wealth of a portfolio at time n. The
portfolio is self-financing portfolio if and only if the discounted wealth DnXn is a martingale under P̃ .

Remark 6.6. The only thing we will use in this proof is that DnSn is a martingale under P̃ . The interest rate r can be a random
adapted process. It is also not special to the binomial model – it works for any model for which there is a risk neutral measure.



Before proving Theorem 6.5, we consider a few consequences:

Theorem 6.7. The multi-period binomial model is arbitrage free if and only if d < 1 + r < u.

Remark 6.8. The first fundamental theorem of asset pricing states that a risk neutral measure exists if and only if the market is
arbitrage free. (We will prove this in more generality later.)





Theorem 6.9. Let d < 1 + r < u, and VN be an FN measurable random variable. Consider a security that pays VN at maturity
time N . For any n � N , the arbitrage free price of this security is given by

Vn = 1
Dn

Ẽn(DN VN ) .





Remark 6.10. The replicating strategy can be found by backward induction. Let ω = (ω �, ωn+1, ω��). Then

Δn(ω) = Vn+1(ω�, 1, ω��) − Vn+1(ω�, −1, ω��)
u − d

= Vn+1(ω�, 1) − Vn+1(ω�, −1)
u − d





Theorem 6.9. Let d < 1 + r < u, and VN be an FN measurable random variable. Consider a security that pays VN at maturity
time N . For any n � N , the arbitrage free price of this security is given by

Vn = 1
Dn

Ẽn(DN VN ) .



Remark 6.10. The replicating strategy can be found by backward induction. Let ω = (ω �, ωn+1, ω��). Then

Δn(ω) = Vn+1(ω�, 1, ω��) − Vn+1(ω�, −1, ω��)
u − d

= Vn+1(ω�, 1) − Vn+1(ω�, −1)
u − d





Proof of Theorem 6.5 part 1. Suppose Xn is the wealth of a self-financing portfolio. Need to show DnXn is a martingale under P̃ .





Proof of Theorem 6.5 part 2. Suppose DnXn is a martingale under P̃ . Need to show Xn is the wealth of a self-financing portfolio.











7. State processes.
Question 7.1. Consider the N -period binomial model, and a security with payoff VN . Let Xn be the arbitrage free price at time
n � N , and Δn be the number of shares in the replicating portfolio. What is an algorithm to find Xn, Δn for all n � N? How much
is the computational time?









Theorem 7.2. Suppose a security pays VN = g(SN ) at maturity N for some (non-random) function g. Then the arbitrage free
price at time n � N is given by Vn = fn(Sn), where:

(1) fN (x) = VN (x) for x ∈ Range(SN ).
(2) fn(x) = 1

1 + r
(p̃fn+1(ux) + q̃fn+1(dx)) for x ∈ Range(Sn).

Remark 7.3. Reduces the computational time from O(2N ) to O(
�N

0 |Range(Sn)|) = O(N2) for the Binomial model.

Remark 7.4. Can solve this to get fn(x) =
N−n�

k=0

�
N − n

k

�
fN (xukdN−n−k)









Theorem 7.2. Suppose a security pays VN = g(SN ) at maturity N for some (non-random) function g. Then the arbitrage free
price at time n � N is given by Vn = fn(Sn), where:

(1) fN (x) = VN (x) for x ∈ Range(SN ).
(2) fn(x) = 1

1 + r
(p̃fn+1(ux) + q̃fn+1(dx)) for x ∈ Range(Sn).

Remark 7.3. Reduces the computational time from O(2N ) to O(
�N

0 |Range(Sn)|) = O(N2) for the Binomial model.

Remark 7.4. Can solve this to get fn(x) =
N−n�

k=0

�
N − n

k

�
fN (xukdN−n−k)





Question 7.5. How do we handle other securities? E.g. Asian options (of the form g(
�N

0 Sk))?



Definition 7.6. We say a process X is a Markov process if P (Xn+1 = xn+1 | X1 = x1, . . . , Xn = xn) = P (Xn+1 = xn+1 | Xn = xn).

Theorem 7.7. A process X is Markov if and only if for every (bounded, continuous) function f , there exists a function g such that
Enf(Xn+1) = g(Xn).

Question 7.8. If Xn represents i.i.d. coin tosses, is Xn Markov? Is Yn =
�n

0 Xk Markov?





Question 7.9. Is Sn (stock in the Binomial model) Markov under P̃ ? Is An = 1
n

�n
0 Sk Markov under P̃ ?





Question 7.10. Is (Sn, An) Markov?



Definition 7.11. We say a d-dimensional process Y = (Y 1, . . . , Y d) process is a state process if for any security with maturity
m � N , and payoff of the form Vm = fm(Ym) for some (non-random) function fm, the arbitrage free price must also be of the form
Vn = fn(Yn) for some (non-random) function fn.

Remark 7.12. For state processes given fN , we find fn by backward induction. The number of computations at time n is of order
Range(Yn).

Remark 7.13. The fact that Sn is Markov (under P̃ ) implies that it is a state process.
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Vn = fn(Yn) for some (non-random) function fn.

Remark 7.12. For state processes given fN , we find fn by backward induction. The number of computations at time n is of order
Range(Yn).

Remark 7.13. The fact that Sn is Markov (under P̃ ) implies that it is a state process.





Theorem 7.14. Let Y = (Y 1, . . . , Y d) be a d-dimensional process. Suppose we can find functions g1, . . . , gN such that Yn+1(ω) =
gn+1(Yn(ω), ωn+1). Then Y is a state process.







Question 7.15. Is Yn = Sn a state process?

Question 7.16. Is Yn = maxk�n Sn a state process?

Question 7.17. Is Yn = (Sn, maxk�n Sn) a state process?





Question 7.18. Let An =
�n

0 Sk. Is An a state process?

Question 7.19. Is Yn = (Sn, An) a state process?





6.3. Options with random maturity. Consider the N period binomial model with 0 < d < 1 + r < u.

Example 6.30 (Up-and-rebate option). Let A, U > 0. The up-and-rebate option pays the face value A at the first time the stock
price exceeds U (up to maturity time N), and nothing otherwise. Explicitly, let τ = min{n � N | Sn � U}, and let σ = τ ∧ N . The
up-and-rebate options pays A1τ�N at the random time σ.

Remark 6.31. By convention min ∅ = ∞.



Definition 6.32. We say a random variable τ is a stopping time if:
(1) τ : Ω → {0, . . . , N} ∪ ∞
(2) For all n � N , the event {τ � n} ∈ Fn.

Remark 6.33. We say τ is a finite stopping time if τ < ∞ almost surely.

Remark 6.34. The second condition above is equivalent to requiring {τ = n} ∈ Fn for all n.



Question 6.35. Is τ = 5 a stopping time?

Question 6.36. Is the first time the stock price hits U a stopping time?

Question 6.37. Is the last time the stock price hits U a stopping time?





Question 6.38. If σ and τ are stopping times, is σ ∧ τ a stopping time? How about σ ∨ τ?



• Let G be an adapted process, and σ be a finite stopping time.
• Consider a derivative security that pays Gσ at the random time σ.
• Note Gσ =

�N
n= Gn1σ=n.

• Let (X0, (Δn)) be a self-financing portfolio, and Xn at time n be the wealth of this portfolio at time n.

Definition 6.39. A self-financing portfolio with wealth process X is a replicating strategy if Xσ = Gσ.

Theorem 6.40. The security with payoff Gσ (at the stopping time σ) can be replicated. The arbitrage free price is given by

Xn1{σ�n} = 1
Dn

Ẽn(DσGσ1{σ�n})

Remark 6.41. The only thing required for the proof of Theorem 6.40 is the fact that Xn is the wealth of a self-financing portfolio if
and only if DnXn is a P̃ martingale.
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• Let (X0, (Δn)) be a self-financing portfolio, and Xn at time n be the wealth of this portfolio at time n.

Definition 6.39. A self-financing portfolio with wealth process X is a replicating strategy if Xσ = Gσ.

Theorem 6.40. The security with payoff Gσ (at the stopping time σ) can be replicated. The arbitrage free price is given by

Xn1{σ�n} = 1
Dn

Ẽn(DσGσ1{σ�n})

Remark 6.41. The only thing required for the proof of Theorem 6.40 is the fact that Xn is the wealth of a self-financing portfolio if
and only if DnXn is a P̃ martingale.











Proposition 6.42. The wealth of the replicating portfolio (at times before σ) is uniquely determined by the recurrence relations:
XN 1{σ=N} = GN 1{σ=N}

Xn1{σ�n} = Gn1{σ=n} + 1
1 + r

1{σ>n}ẼnXn+1 .

If we write ω = (ω�, ωn+1, ω��) with ω� = (ω1, . . . , ωn), then we know in the Binomial model we have
ẼnXn+1(ω) = ẼnXn+1(ω�) = p̃Xn+1(ω�, 1) + q̃Xn+1(ω�, −1) .





Proposition 6.42. The wealth of the replicating portfolio (at times before σ) is uniquely determined by the recurrence relations:
XN 1{σ=N} = GN 1{σ=N}

Xn1{σ�n} = Gn1{σ=n} + 1
1 + r

1{σ>n}ẼnXn+1 .

If we write ω = (ω�, ωn+1, ω��) with ω� = (ω1, . . . , ωn), then we know in the Binomial model we have
ẼnXn+1(ω) = ẼnXn+1(ω�) = p̃Xn+1(ω�, 1) + q̃Xn+1(ω�, −1) .



As before, we will use state processes to find practical algorithms to price securities.

Proposition 6.43. Let Y = (Y 1, . . . , Y d) be a d-dimensional process such that for every n we have Yn+1(ω) = hn+1(Yn(ω), ωn+1)
for some deterministic function hn+1. Let A1, . . . , AN ⊆ Rd, with AN Rd, and define the stopping time σ by

σ = min{n ∈ {0, . . . , N} | Yn ∈ An} .

Let g0, . . . gN be N deterministic functions on Rd, and consider a security that pays Gσ = gσ(Yσ). The arbitrage free price of this
security is of the form Vn1{σ�n} = fn(Yn)1{σ�n} . The functions fn satisfy the recurrence relation

fN (y) = gN (y)

fn(y) = 1{y∈An}gn(y) +
1{y /∈An}

1 + r

�
p̃fn+1(hn+1(y, 1)) + q̃fn+1(hn+1(y, −1))

�







6.4. Optional Sampling. Consider a market with a few risky assets and a bank.

Question 6.44. If there is no arbitrage opportunity at time N , can there be arbitrage opportunities at time n � N? How about at
finite stopping times?





Proposition 6.45. There is no arbitrage opportunity at time N if and only if there is no arbitrage opportunity at any finite stopping
time.



Question 6.46. Say M is a martingale. We know EMn = EM0 for all n. Is this also true for stopping times?



Theorem 6.47 (Doob’s optional sampling theorem). Let τ be a bounded stopping time and M be a martingale. Then EnMτ = Mτ∧n.





Question 6.46. Say M is a martingale. We know EMn = EM0 for all n. Is this also true for stopping times?



Theorem 6.47 (Doob’s optional sampling theorem). Let τ be a bounded stopping time and M be a martingale. Then EnMτ = Mτ∧n.









Proposition 6.48. Suppose a market admits a risk neutral measure. If X is the wealth of a self-financing portfolio and τ is a
finite stopping time such that X0 = 0, and Xτ � 0, then Xτ = 0.

Remark 6.49. This is simply an alternate proof of Proposition 6.45.





Question 6.50 (Gamblers ruin). Suppose N = ∞. Let Xn be i.i.d. random variables with mean 0, and let Sn =
�n

1 Xk. Let
τ = min{n | Sn = 1}. (It is known that τ < ∞ almost surely.) What is ESτ ? What is limN→∞ ESτ∧N ?





6.5. American Options. An American option is an option that can be exercised at any time chosen by the holder.

Definition 6.51. Let G0, G1, . . . , GN be an adapted process. An American option with intrinsic value G is a security that pays
Gσ at any finite stopping time σ chosen by the holder.

Example 6.52. An American put with strike K is an American option with intrinsic value (K − Sn)+.

Question 6.53. How do we price an American option? How do we decide when to exercise it? What does it mean to replicate it?



Strategy I: Let σ be a finite stopping time, and consider an option with (random) maturity time σ and payoff Gσ. Let V σ
0 denote

the arbitrage free price of this option. The arbitrage free price of the American option should be V0 = max
σ

V σ
0 , where the maximum

is taken over all finite stopping times σ.

Definition 6.54. The optimal exercise time is a stopping time σ∗ that maximizes V σ∗
0 over all finite stopping times.

Definition 6.55. An optimal exercise time σ∗ is called minimal if for every optimal exercise time τ ∗ we have σ∗ � τ∗.

Remark 6.56. The optimal exercise time need not be unique. (The minimal optimal exercise time is certainly unique.)





Question 6.57. Does this replicate an American option? Say σ∗ is the optimal exercise time, and we create a replicating portfolio
(with wealth process X) for the option with payoff Gσ∗ at time σ∗. Suppose an investor cashes out the American option at time τ .
Can we pay him?



Strategy II: Replication. Suppose we have sold an American option with intrinsic value G to an investor. Using that, we hedge our
position by investing in the market/bank, and let Xn be the our wealth at time n.

(1) Need Xσ � Gσ for all finite stopping times σ. (Or equivalently Xn � Gn for all n.)
(2) For (at-least) one stopping time σ∗, need Xσ∗ = Gσ∗ .

The arbitrage free price of this option is X0.





Proposition 6.58. In the binomial model with 0 < d < 1 + r < u, we must have X0 = max{V σ
0 | σ is a finite stopping time }.

Remark 6.59. The above is true in any complete, arbitrage free market.





Question 6.60. Is the wealth of the replicating portfolio (for an American option) uniquely determined?







Question 6.60. Is the wealth of the replicating portfolio (for an American option) uniquely determined?





Question 6.61. How do you find the minimal optimal exercise time, and the arbitrage free price? Let’s take a simple example first.



Theorem 6.62. Consider an American option with intrinsic value G. Define

VN = GN , Vn = max
� 1

Dn
Ẽn(Dn+1Vn+1), Gn

�
, σ∗ = min{n � N | Vn = Gn} .

Then Vn is the arbitrage free price, and σ∗ is the minimal optimal exercise time.

Remark 6.63. For the binomial model with 0 < d < 1 + r < u the above simplifies to

Vn+1(ω) = max
� 1

1 + r

�
p̃Vn+1(ω�, 1) + q̃Vn+1(ω�, −1)

�
, Gn(ω)

�
, where ω = (ω�, ωn+1, ω��) , ω� = (ω1, . . . , ωn) .
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Ẽn(Dn+1Vn+1), Gn

�
, σ∗ = min{n � N | Vn = Gn} .
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Remark 6.64. In the Binomial model the above simplifies to:

Vn+1(ω) = max
� 1

1 + r

�
p̃Vn+1(ω�, 1) + q̃Vn+1(ω�, −1)

�
, Gn(ω)

�
, where ω = (ω�, ωn+1, ω��) , ω� = (ω1, . . . , ωn) .





















Theorem 6.62. Consider the binomial model with 0 < d < 1 + r < u, and an American option with intrinsic value G. Define

VN = GN , Vn = max
� 1

Dn
Ẽn(Dn+1Vn+1), Gn

�
, σ∗ = min{n � N | Vn = Gn} .

Then Vn is the arbitrage free price, and σ∗ is the minimal optimal exercise time. Moreover, this option can be replicated.

Remark 6.63. The above is true in any complete, arbitrage free market.

Remark 6.64. In the Binomial model the above simplifies to:

Vn(ω) = max
� 1

1 + r

�
p̃Vn+1(ω�, 1) + q̃Vn+1(ω�, −1)

�
, Gn(ω)

�
, where ω = (ω�, ωn+1, ω��) , ω� = (ω1, . . . , ωn) .



Theorem 6.65. Consider the Binomial model with 0 < d < 1 + r < u, and a state process Y = (Y 1, . . . , Y d) such that Yn+1(ω) =
hn+1(Yn(ω�), ωn+1), where ω� = (ω1, . . . , ωn), ω = (ω�, ωn+1, . . . , ωN ), and h0, h1, . . . , hN are N deterministic functions. Let
g0, . . . , gN be N deterministic functions, let Gk = gk(Yk), and consider an American option with intrinsic value G = (G0, G1, . . . , GN ).
The pre-exercise price of the option at time n is fn(Yn), where

fN (y) = gN (y) for y ∈ Range(YN ) , fn(y) = max
�

gn(y), 1
1 + r

�
p̃fn+1(hn+1(y, u))+q̃fn+1(hn+1(y, d))

��
, for y ∈ Range(Yn) .

The minimal optimal exercise time is σ∗ = min{n | fn(Yn) = gn(Yn)}.









































Theorem 6.66. Let g be a convex function with g(0) = 0, and let Gn = g(Sn). Consider an American option with intrinsic value
Gn = g(Sn). You should never exercise this option early.

Corollary 6.67. The arbitrage free price of an American call and European call are the same.















6.6. Doob Decomposition and Optimal Stopping.

Theorem 6.68 (Doob decomposition). Any adapted process can be uniquely expressed as the sum of a martingale and a predictable
process.











6.6. Doob Decomposition and Optimal Stopping.

Theorem 6.68 (Doob decomposition). Any adapted process can be uniquely expressed as the sum of a martingale and a predictable
process that starts at 0. That is, if X is an adapted process there exists a unique pair of process M, A such that M is a martingale,
A is predictable, A0 = 0 and X = M + A.







Definition 6.69. We say an adapted process M is a super-martingale if EnMn+1 � Mn.

Definition 6.70. We say an adapted process M is a sub-martingale if EnMn+1 � Mn.

Example 6.71. The discounted arbitrage free price of an American option is a super-martingale under the risk neutral measure.



Proposition 6.72. If X is a super-martingale, then there exists a unique martingale M and increasing predictable process A such
that X = M − A.

Proposition 6.73. If X is a sub-martingale, then there exists a unique martingale M and increasing predictable process A such
that X = M + A.





Corollary 6.74. If X is a super-martingale and τ is a bounded stopping time, then EnXτ � Xτ∧n.

Corollary 6.75. If X is a sub-martingale and τ is a bounded stopping time, then EnXτ � Xτ∧n.





Theorem 6.76 (Snell). Let G be an adapted process, and define V by
VN = GN Vn = max{EnVn+1, Gn} .

Then V is the smallest super-martingale for which Vn � Gn.









Theorem 6.76 (Snell). Let G be an adapted process, and define V by
VN = GN Vn = max{EnVn+1, Gn} .

Then V is the smallest super-martingale for which Vn � Gn.





Proposition 6.77. If W is any martingale for which Wn � Gn, and for one stopping time τ∗ we have EWτ∗ = EGτ∗ , then we
must have Wτ∗∧n = Vτ∗∧n, and Wτ∗∧n is a martingale.

Theorem 6.78. Let σ∗ = min{n | Vn = Gn}. Then σ∗ is the minimal solution to the optimal stopping problem for G. Namely,
EGσ∗ = maxσ EGσ where the maximum is taken over all finite stopping times σ. Moreover, if EGτ∗ = maxσ EGσ for any other
finite stopping time τ∗, we must have τ∗ � σ∗.

Remark 6.79. By construction Vσ∗∧n is a martingale.







Theorem 6.80. For any k ∈ {0, . . . , N}, let σ∗
k = min{n � k | Vn = Gn}. Then EkGσ∗

k
= maxσk

EkGσk
, where the maximum is

taken over all finite stopping times σk for which σk � k almost surely.



Theorem 6.81. Let V = M − A be the Doob decomposition for V , and define τ∗ = max{n | An = 0}. Then τ∗ is a stopping time
and is the largest solution to the optimal stopping problem for G.

I found a better shorter proof of this without relying
on what I did for American options. I'll present the proof
next class









7. Fundamental theorems of Asset Pricing





Theorem 6.81. Let V = M − A be the Doob decomposition for V , and define τ∗ = max{n | An = 0}. Then τ∗ is a stopping time
and is the largest solution to the optimal stopping problem for G.











7. Fundamental theorems of Asset Pricing
7.1. Markets with multiple risky assets.
(1) Ω = {1, . . . , M}N is a probability space representing N rolls of M -sided dies, and p is a probability mass function on Ω.
(2) The die rolls need not be i.i.d.
(3) Consider a financial market with d + 1 assets S0, S1, . . . , Sd. (Sk

n denotes the price of the k-th asset at time n.)
(4) For i ∈ {1, . . . , d}, Si is an adapted process (i.e. Si

n is Fn-measurable).
(5) The 0-th asset S0 is assumed to be a risk free bank/money market:

(a) Let rn be an adapted process specifying the interest rate at time n.
(b) Let S0

0 = 0, and S0
n+1 = (1 + rn)S0

n. (Note S0 is predictable.)
(c) Let Dn = (S0

n)−1 be the discount factor (Dn dollars at time 0 becomes 1 dollar at time n).
(6) Let Δn = (Δ0

n, . . . , Δd
n) be the position at time n of an investor in each of the assets (S0

n, . . . , Sd
n).

(7) The wealth of an investor holding these assets is given by Xn = Δn · Sn
def=

�d
i=1 Δi

nSi
n.







Definition 7.1. Consider a portfolio whose positions in the assets at time n is Δn. We say this portfolio is self-financing if Δn is
adapted, and Δn · Sn+1 = Δn+1 · Sn+1.



7.2. First fundamental theorem of asset pricing.

Definition 7.2. We say the market is arbitrage free if for any self financing portfolio with wealth process X, we have: X0 = 0 and
XN � 0 implies XN = 0 almost surely.

Definition 7.3. We say P̃ is a risk neutral measure if P̃ is equivalent to P and Ẽn(Dn+1Si
n+1) = DnSi

n for every i ∈ {0, . . . , d}.

Theorem 7.4. The market is arbitrage free if and only if there exists a risk neutral measure.

Proof that existence of a risk neutral measure implies no-arbitrage.













7.2. First fundamental theorem of asset pricing.

Definition 7.2. We say the market is arbitrage free if for any self financing portfolio with wealth process X, we have: X0 = 0 and
XN � 0 implies XN = 0 almost surely.

Definition 7.3. We say P̃ is a risk neutral measure if P̃ is equivalent to P and Ẽn(Dn+1Si
n+1) = DnSi

n for every i ∈ {0, . . . , d}.

Theorem 7.4. The market defined in Section 7.1 is arbitrage free if and only if there exists a risk neutral measure.



Lemma 7.5. If P̃ is a risk neutral measure, then the discounted wealth of any self financing portfolio is a P̃ -martingale.

Proof that existence of a risk neutral measure implies no-arbitrage.



Lemma 7.6. Suppose the market has no arbitrage, and X is the wealth process of a self-financing portfolio. If for any n, Xn = 0
and Xn+1 � 0, then we must have Xn+1 = 0 almost surely.



Lemma 7.7. Suppose we find an equivalent measure P̃ such that whenever Δn · Sn = 0, we have Ẽn(Δn · Sn+1) = 0, then P̃ is a
risk neutral measure.







Lemma 7.8. Suppose p̃ is a probability mass function such that p̃(ω) = p̃1(ω1)p̃2(ω1, ω2) · · · p̃N (ω1, . . . , ωN ). If Xn+1 is Fn+1-
measurable, then

ẼnXn+1(ω) =
M�

i=1
p̃n+1(ω�, j)Xn+1(ω�, j) , where ω� = (ω1, . . . , ωn) , ω = (ω�, ωn+1, ωn+1, . . . , ωN )



Lemma 7.9. Define Q̄
def= {v ∈ RM | vi � 0 ∀i ∈ {1, . . . , M}}, and Q̊

def= {v ∈ RM | vi > 0 ∀i ∈ {1, . . . , M}}. Let V ⊆ RM be a
subspace.

(1) V ∩ Q̄ = {0} if and only if there exists n̂ ∈ Q̊ such that |n̂| = 1 and n̂ ⊥ V .
(2) The normal vector n̂ is unique if and only if dim(V ) = M − 1.

Remark 7.10. This is a special case of the Hyperplane separation theorem used in convex analysis.



Proof of Theorem 7.4.

















7.3. Second fundamental theorem.

Definition 7.11. A market is said to be complete if every derivative security can be hedged.

Theorem 7.12. The market defined in Section 7.1 is complete and arbitrage free if and only if there exists a unique risk neutral
measure.



Lemma 7.13. The market is complete if and only if for every Fn+1-measurable random variable Xn+1, there exists a (not necessarily
unique) Fn measurable random vector Δn = (Δ0

n, . . . , Δd
n) such that Xn+1 = Δn · Sn+1.





Proof of Theorem 7.12









7.4. Examples and Consequences.

Proposition 7.14. Suppose the market model Section 7.1 is complete and arbitrage free, and let P̃ be the unique risk neutral
measure. If DnXn is a P̃ martingale, then Xn must be the wealth of a self financing portfolio.

Remark 7.15. We’ve already seen in Lemma 7.5 that if a (not necessarily unique) risk neutral measure exists, then the discounted
wealth of any self financing portfolio must be a martingale under it.

Remark 7.16. All pricing results/formulae we derived for the Binomial model that only relied on the analog of Proposition 7.14 will
hold in complete arbitrage free markets.









Question 7.17. Consider a market consisting of a bank with interest rate r, and two stocks with price processes S1, S2. At each
time step we flip two independent coins. The price of the i-th stock (i ∈ {1, 2}) changes by factor ui, or di depending on whether the
i-th coin is heads or tails. When is this market arbitrage free? When is this market complete?















Question 7.18. Consider now repeated rolls of a 3-sided die and for i ∈ {1, 2}, let Zi
n = ui(j) if the n-th die rolls j. Suppose

Si
n+1 = Si

nZi
n+1. Find conditions when this market is complete and arbitrage free.













8. Black-Scholes Formula
(1) Suppose now we can trade continuously in time.
(2) Consider a market with a bank and a stock, whose spot price at time t is denoted by St.
(3) The continuously compounded interest rate is r (i.e. money in the bank grows like ∂tC(t) = rC(t).
(4) Assume liquidity, neglect transaction costs (frictionless), and the borrowing/lending rates are the same.
(5) In the Black-Scholes setting, we model the stock prices by a Geometric Brownian motion with parameters α (the mean

return rate) and σ (the volatility).
(6) The price at time t of a European call with maturity T and strike K is given by

c(t, x) = xN(d+(T − t, x)) − Ke−r(T −t)N(d−(T − t, x)) ,

where d± = 1
σ

√
τ

�
ln

� x

K

�
+

�
r ± σ2

2

�
τ
�

, N(x) = 1√
2π

� x

−∞
e−y2/2 dy .

(7) We will derive this as the limit of the Binomial model as N → ∞.





8.1. Law of large numbers. Now consider infinitely many i.i.d. random variables X1, X2, . . . .

Theorem 8.1 (Weak law of large numbers). Suppose EXn = µ and Var Xn = σ2 < ∞, and let Sn =
�n

1 Xk. Then Var(Sn/n) → 0,
and hence for any ε > 0, lim

n→∞
P

����Sn

n
− µ

��� > ε
�

= 0.

Lemma 8.2 (Chebychev’s inequality). For any ε > 0, P (X > ε) � 1
ε E|X|.



Proof of Theorem 8.1





Theorem 8.3 (Strong law of large numbers). Under the same assumptions as Theorem 8.1, lim
n→∞

Sn

n
= µ almost surely.





8.2. Central limit theorem.

Theorem 8.4. Let Xn be a sequence of Rd valued, i.i.d. random variables be such that EXi
n = µi and cov(Xi

n, Xj
n) = Σi,j. Let

SN =
�N

1 Xn. Then (SN − µ)/
√

N converges weakly to N (µ, Σ).

Definition 8.5. We say a sequence of random variables Yn converges weakly to a random variable Z if Ef(Yn) → Ef(Z) for every
bounded continuous function f .

Definition 8.6. Let µ ∈ Rd, and Σ be a d × d covariance matrix (positive semi-definite, symmetric).
(1) N (µ, Σ) denotes a normally distributed random variable with mean µ and covariance matrix Σ.
(2) When Σ is invertible, the probability density function of N (µ, Σ) is 1

(2π det(Σ))d/2 exp
�

−1
2(x − µ) · Σ−1(x − µ)

�

(3) When d = 1, Σ = σ2 the PDF of N (µ, σ2) is 1√
2πσ2

e−(x−µ)/(2σ2).

(4) When µ = 0, σ = 1, N (0, 1) is called the standard normal, and its PDF is the Gaussian G(x) = 1√
2π

e−x2/2.

Definition 8.7. We say p is the probability density function (PDF) of a d-dimensional random variable X if P (X ∈ A) =
�

A
p(x) dx

for all cubes A ⊆ Rd.

Remark 8.8. Equivalently, p is the PDF of X if Ef(X) =
�
Rd f(x)p(x) dx for every bounded continuous function f .

Remark 8.9. We will prove Theorem 8.4 during the course of the construction of Brownian motion.









8.3. Brownian motion.
• Suppose now X1, X2, . . . are i.i.d. R valued random variables.
• Use P̃ to denote the probability measure, and Ẽ, Ẽn to denote the associated expectation / conditional expectation.
• Assume ẼXn = 0, and ẼX2

n = 1.

Theorem 8.10. Let W N
n = 1√

N
Sn = 1√

N

�n
1 Xk. Then limN→∞ W N

�Nt� exists almost surely.

Theorem 8.11. (1) The function t �→ Wt is continuous almost surely, and W0 = 0.
(2) If 0 = t0 < t1 < · · · tn, then Wt1 − Wt0 , Wt2 − Wt1 , . . . , Wtn

− Wtn−1 are independent and Wti
− Wti−1 ∼ N (0, ti − ti−1).

Remark 8.12. Typically one changes the probability space to ensure the function t �→ Wt is continuous surely.

Definition 8.13. The process W above is called a standard (one dimensional) Brownian motion.
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• Use P̃ to denote the probability measure, and Ẽ, Ẽn to denote the associated expectation / conditional expectation.
• Assume ẼXn = 0, and ẼX2

n = 1.

Theorem 8.10. Let W N
n = 1√

N
Sn = 1√

N

�n
1 Xk. Then limN→∞ W N

�Nt� exists almost surely.

Theorem 8.11. (1) The function t �→ Wt is continuous almost surely, and W0 = 0.
(2) If 0 = t0 < t1 < · · · tn, then Wt1 − Wt0 , Wt2 − Wt1 , . . . , Wtn

− Wtn−1 are independent and Wti
− Wti−1 ∼ N (0, ti − ti−1).

Remark 8.12. Typically one changes the probability space to ensure the function t �→ Wt is continuous surely.

Definition 8.13. The process W above is called a standard (one dimensional) Brownian motion.



The full proof of Theorems 8.10 and 8.11 are technical and beyond the scope of this course. However, we can prove a weaker
result here:

Proposition 8.14. WT ∼ N (0, T ).

Remark 8.15. The above is simply the central limit theorem (which we never proved). We will prove it here. Our proof can also be
modified to prove that W has independent normally distributed increments.



Lemma 8.16. Let f be a bounded continuous function, fix T > 0. By the Markov property we know Ẽnf(W N
�NT �) = gn(W N

n ) for
some function gn. Set u(t, x) = limN→∞ g�Nt�(x). Then ∂tu + 1

2 ∂2
xu = 0 and u(T, x) = f(x).
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some function gn. Set u(t, x) = limN→∞ g�Nt�(x). Then ∂tu + 1
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Lemma 8.17. Suppose u = u(t, x) satisfies ∂tu + 1
2 ∂2

xu = 0 for t < T and u(T, x) = f(x), then

u(t, x) =
�

R
f(y)GT −t(x − y) dy =

�

R
f(x − y)GT −t(y) dy , where Gt(x) = 1√

2πt
e−x2/2t .









Proof of Proposition 8.14





Definition 8.18. We say a random variable Y is Ft measurable if Y = limn→∞ fn(Wt1 , . . . , Wtn) where ti � t for all i.

Definition 8.19. If Y = f(Wt1 , . . . , Wtn
) for some function f and 0 � t1 · · · < tn, define EtY = lim

N→∞
Ẽ�Nt�f(W N

�Nt1�, . . . , W N
�Ntn�)

Remark 8.20. Etf(WT ) = u(t, Wt), where u is the function in Lemma 8.16.

Proposition 8.21. W is a martingale.





Definition 8.18. We say a random variable Y is Ft measurable if Y = limn→∞ fn(Wt1 , . . . , Wtn) where ti � t for all i.

Definition 8.19. If Y = f(Wt1 , . . . , Wtn
) for some function f and 0 � t1 · · · < tn, define EtY = lim

N→∞
Ẽ�Nt�f(W N

�Nt1�, . . . , W N
�Ntn�)

Remark 8.20. Etf(WT ) = u(t, Wt), where u is the function in Lemma 8.16.

Remark 8.21. The operator Et satisfies the same properties as Ẽn (e.g. Et(XY ) = XEtY if X is Ft measurable, independence
lemma, etc.) These will be developed systematically in continuous time finance.

Proposition 8.22. W is a martingale.









8.4. Convergence of the Binomial Model.
(1) Let rN > −1, and consider a bank that pays you interest rN every 1/N time units.
(2) Question: Can we choose rN so that this converges as N → ∞.
(3) Let CN

0 = 1, CN
n+1 = (1 + rN )CN

n and Ct = lim
N→∞

CN
�Nt�.

Proposition 8.23. If r ∈ R, rN = r/N , then Ct = ert.

Remark 8.24. Note ∂tCt = rCt. The quantity r is known as the continuously compounded interest rate.

Remark 8.25. If the interest rate is a constant r, then the discount factor is simply Dt = 1/Ct = e−rt.





(1) Now consider the N period Binomial model, with parameters 0 < dN < 1 + rN < uN , with stock price denoted by SN
n .

(2) Each time step for SN denotes 1/N time units in real time. Can we chose uN , dN , rN such that St = lim
N→∞

SN
�Nt� exists?

(3) Choose rN = r/N , where r ∈ R is the continuously compounded interest rate.

Theorem 8.26. Let u, d > 0 and choose

uN = 1 + r

N
+ u√

N
, dN = 1 + r

N
− d√

N
, p̃ = d

u + d
, q̃ = u

u + d
, σ2 = p̃u2 + q̃d2 .

Under the risk neutral measure, the processes SN
�Nt� converge weakly to St = S0e(r−σ2/2)t+σWt , where W is a Brownian motion.

That is, for any bounded continuous function f ,

lim
N→∞

Ẽf(SN
�Nt�) = Ẽtf(St) = Ẽf

�
S0 exp

��
r − σ2

2

�
t + σWt

��

Remark 8.27. St above is called a Geometric Brownian motion with mean return rate r, and volatility σ.

Remark 8.28. The fact that we took the limit under the risk neutral measure is the reason the mean return rate r is the same as the
interest rate r.

Remark 8.29. In this continuous time market you have the asset (whose price is denoted by St), and a bank with continuously
compounded interest rate r (i.e. discount factor is Dt = e−rt). You can trade continuously in time, and we are neglecting any
transaction costs.





Theorem 8.30. Consider a security that pays f(ST ) at maturity time T . The arbitrage free price of this security at time t is given
by

Vt = 1
Dt

Ẽt

�
DT f(ST )

�
= Ẽt

�
e−r(T −t)f(ST )

�

Proof. For the Binomial model we already know V N
n = 1

DN
n

ẼnDN
�NT �f(SN

�NT �). Set n = �Nt� and send N → ∞. �
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Theorem 8.30. Consider a security that pays f(ST ) at maturity time T . The arbitrage free price of this security at time t is given
by
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Proof of Theorem 8.26



Theorem 8.31 (Black-Scholes formula). In the above market, a European call with maturity T and strike K pays (ST − K)+ at
time T . The arbitrage free price of this call at time t is c(t, St), where

c(t, x) = xN(d+(T − t, x)) − Ke−r(T −t)N(d−(T − t, x)) ,

where d± = 1
σ

√
τ

�
ln

� x

K

�
+

�
r ± σ2

2

�
τ
�

, N(x) = 1√
2π

� x

−∞
e−y2/2 dy .

Proof. Let τ = T − t. We know c(t, S(t)) = Ẽte
−rτ (ST − K)+. Observe first

St = S0e(r− σ2
2 )t+σWt , ST = S0e(r− σ2

2 )T +σWT , =⇒ ST = Ste
(r− σ2

2 )τ+σ(WT −Wτ ) ,

Since WT − Wt is independent of Ft, and St is Ft measurable, by the independence lemma,

c(t, St) = Ẽte
−rτ (Ste

(r− σ2
2 )τ+σ(WT −Wτ ) − K)+ =

�

R
e−rτ (Ste

(r− σ2
2 )τ+σ

√
τy − K)+e−y2/2 dy√

2π
.

Now set St = x,

d±(τ, x) def= 1
σ

√
τ

�
ln

� x

K

�
+

�
r ± σ2

2

�
τ
�

, N(x) = 1√
2π

� x

−∞
e−y2/2 dy = 1√

2π

� ∞

−x

e−y2/2 dy ,

and observe

c(t, x) = 1√
2π

� ∞

−d−

x exp
�−σ2τ

2 + σ
√

τy − y2

2

�
dy − e−rτ KN(d−)

= 1√
2π

� ∞

−d−

x exp
�−(y − σ

√
τ)2

2

�
dy − e−rτ KN(d−) = xN(d+) − e−rτ KN(d−) . �




