
Stochastic Calculus for Finance
Brief Lecture Notes

Gautam Iyer



Gautam Iyer, 2020.

c© 2020 by Gautam Iyer. This work is licensed under the Creative Commons Attribution - Non Commercial
- Share Alike 4.0 International License. This means you may adapt and or redistribute this document for non
commercial purposes, provided you give appropriate credit and re-distribute your work under the same licence.
To view the full terms of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

A DRM free PDF of these notes will always be available free of charge at http://www.math.cmu.edu/~gautam .
A self published print version at nominal cost may be made available for convenience. The LATEX source is
currently publicly hosted at GitLab: https://gitlab.com/gi1242/cmu-mscf-944 .

These notes are provided as is, without any warranty and Carnegie Mellon University, the Department of
Mathematical-Sciences, nor any of the authors are liable for any errors.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.math.cmu.edu/~gautam
https://gitlab.com/gi1242/cmu-mscf-944


Preface

The purpose of these notes is to provide a rapid introduction to the Black-Scholes
formula and the mathematical techniques used to derive it. Most mathematical
concepts used are explained and motivated, but the complete rigorous proofs are
beyond the scope of these notes. These notes were written in 2017 when I was
teaching a seven week course in the Masters in Computational Finance program at
Carnegie Mellon University.

The notes are somewhat minimal and mainly include material that was covered
during the lectures itself. Only two sets of problems are included. These are problems
that were used as a review for the midterm and final respectively. Supplementary
problems and exams can be found on the course website: http://www.math.cmu.
edu/~gautam/sj/teaching/2018-19/944-scalc-finance1 .

For more comprehensive references and exercises, I recommend:
(1) Stochastic Calculus for Finance II by Steven Shreve.
(2) The basics of Financial Mathematics by Rich Bass.
(3) Introduction to Stochastic Calculus with Applications by Fima C Klebaner.

iii

http://www.math.cmu.edu/~gautam/sj/teaching/2018-19/944-scalc-finance1
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CHAPTER 1

Introduction

The price of a stock is not a smooth function of time, and standard calculus
tools can not be used to effectively model it. A commonly used technique is to model
the price, S, as a geometric Brownian motion, given by the stochastic differential
equation (SDE)

dS(t) = αS(t) dt+ σS(t) dW (t) ,
where α and σ are parameters, and W is a Brownian motion. If σ = 0, this is simply
the ordinary differential equation

dS(t) = αS(t) dt or ∂tS = αS(t) .
This is the price assuming it grows at a rate α. The σ dW term models noisy
fluctuations and the first goal of this course is to understand what this means. The
mathematical tools required for this are Brownian motion, and Itô integrals, which
we will develop and study.

An important point to note is that the above model can not be used to predict
the price of S, because randomness is built into the model. Instead, we will use
this model to price securities. Consider a European call option for a stock S with
strike prices K and maturity T (i.e. this is the right to buy the asset S at price K
at time T ). Given the stock price S(t) at some time t 6 T , what is a fair price for
this option?

Seminal work of Black and Scholes computes the fair price of this option in terms
of the time to maturity T − t, the stock price S(t), the strike price K, the model
parameters α, σ and the interest rate r. For notational convenience we suppress the
explicit dependence on K,α, σ and let c(t, x) represent the price of the option at
time t given that the stock price is x. Clearly c(T, x) = (x−K)+. For t 6 T , the
Black-Scholes formula gives

c(t, x) = xN(d+(T − t, x))−Ke−r(T−t)N(d−(T − t, x))
where

d±(τ, x) def= 1
σ
√
τ

(
ln
( x
K

)
+
(
r ± σ2

2

)
τ
)
.

Here r is the interest rate at which you can borrow or lend money, and N is the
CDF of a standard normal random variable. (It might come as a surprise to you
that the formula above is independent of α, the mean return rate of the stock.)

The second goal of this course is to understand the derivation of this formula.
The main idea is to find a replicating strategy. If you’ve sold the above option,
you hedge your bets by investing the money received in the underlying asset, and
in an interest bearing account. Let X(t) be the value of your portfolio at time
t, of which you have ∆(t) invested in the stock, and X(t) −∆(t) in the interest
bearing account. If we are able to choose X(0) and ∆ in a way that would guarantee
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2 1. INTRODUCTION

X(T ) = (S(T )−K)+ almost surely, then X(0) must be the fair price of this option.
In order to find this strategy we will need to understand SDEs and the Itô formula,
which we will develop subsequently.

The final goal of this course is to understand risk neutral measures, and use
them to provide an elegant derivation of the Black-Scholes formula. If time permits,
we will also study the fundamental theorems of asset pricing, which roughly state:

(1) The existence of a risk neutral measure is equivalent to the market having
no arbitrage (i.e. you can’t make money without taking risk).

(2) Uniqueness of a risk neutral measure is equivalent to the market having no
arbitrage, and that all derivative securities can be hedged (i.e. for every
derivative security we can find a replicating portfolio).



CHAPTER 2

Brownian motion, and an Introduction to Modern
Probability

1. Scaling limit of random walks.

Our first goal is to understand Brownian motion, which is used to model “noisy
fluctuations” of stocks, and various other objects. This is named after the botanist
Robert Brown, who observed that the microscopic movement of pollen grains appears
random. Intuitively, Brownian motion can be thought of as a process that performs
a random walk in continuous time.

We begin by describing Brownian motion as the scaling limit of discrete random
walks. Let ξ1, ξ2, . . . , be a sequence of i.i.d. random variables which take on the
values ±1 with probability 1/2. Define the time interpolated random walk S(t) by
setting S(0) = 0, and

(1.1) S(t) = S(n) + (t− n)ξn+1 when t ∈ (n, n+ 1] .

Note S(n) =
∑n

1 ξi, and so at integer times S is simply a symmetric random walk
with step size 1.

Our aim now is to rescale S so that it takes a random step at shorter and
shorter time intervals, and then take the limit. In order to get a meaningful limit,
we will have to compensate by also scaling the step size. Let ε > 0 and define

(1.2) Sε(t) = αεS
( t
ε

)
,

where αε will be chosen below in a manner that ensures convergence of Sε(t) as
ε→ 0. Note that Sε now takes a random step of size αε after every ε time units.

To choose αε, we compute the variance of Sε. Note first

VarS(t) = btc+ (t− btc)2,

and1 consequently

VarSε(t) = α2
ε

(⌊ t
ε

⌋
+
( t
ε
−
⌊ t
ε

⌋)2)
.

In order to get a “nice limit” of Sε as ε→ 0, one would at least expect that VarSε(t)
converges as ε→ 0. From the above, we see that choosing

αε =
√
ε

immediately implies
lim
ε→0

VarSε(t) = t .

1Here bxc denotes the greatest integer smaller than x. That is, bxc = max{n ∈ Z | n 6 x}.
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4 2. BROWNIAN MOTION, AND AN INTRODUCTION TO MODERN PROBABILITY

Theorem 1.1. The processes Sε(t)
def=
√
εS(t/ε) “converge” as ε → 0. The

limiting process, usually denoted by W , is called a (standard, one dimensional)
Brownian motion.

The proof of this theorem uses many tools from the modern theory of probability,
and is beyond the scope of this course. The important thing to take away from this
is that Brownian motion can be well approximated by a random walk that takes
steps of variance ε on a time interval of size ε.

While the above construction provides good intuition as to what Brownian
motion actually is, the scaling limit it is a somewhat unwieldy object to work with.
We instead introduce an intrinsic characterization of Brownian motion, and we will
shortly see that is both useful and mathematically convenient.

Definition 1.2. A Brownian motion is a continuous process that has stationary
independent increments.

Let us briefly explain the terms appearing in the above definition.
(1) A process (aka stochastic process) is simply a collection of random variables
{X(t) | 0 6 t <∞}. The index t usually represents time, and the process
is often written as {Xt | 0 6 t <∞} instead.

(2) A trajectory (aka sample path) of a process is the outcome of one particular
realization each of the random variables X(t) viewed as function of time.

(3) A process is called continuous if each of the trajectories are continuous.
That is, for every t > 0 we have

(1.3) lim
s→t

X(s) = X(t) .

(4) An process is said to have stationary increments if for every h > 0, the
distribution of X(t+ h)−X(t) does not depend on t.

(5) A process is said to have independent increments if for every finite sequence
of times 0 6 t0 < t1 · · · < tN , the random variables X(t0), X(t1)−X(t0),
X(t2)−X(t1), . . . , X(tN )−X(tN−1) are all jointly independent.

For the process S in (1.1), note that for n ∈ N, S(n + 1) − S(n) = Xn+1
whose distribution does not depend on n as the variables {ξi} were chosen to be
independent and identically distributed. Similarly, S(n + k) − S(n) =

∑n+k
n+1 ξi

which has the same distribution as
∑k

1 ξi and is independent of n.
However, if t ∈ R and is not necessarily an integer, S(t+k)−S(t) will in general

depend on t. So the process S (and also Sε) do not have stationary (or independent)
increments.

We claim, that the limiting process W does have stationary, independent,
normally distributed increments. Suppose for some fixed ε > 0, both s and t are
multiples of ε. In this case

Sε(t)− Sε(s) ∼
√
ε

bt−sc/ε∑
i=1

ξi
ε→0−−−→ N(0, t− s) ,

by the central limit theorem. If s, t aren’t multiples of ε as we will have in general,
the first equality above is true up to a remainder which can easily be shown to
vanish.

The above heuristic argument suggests that the limiting process W (from
Theorem 1.1) satisfies W (t)−W (s) ∼ N(0, t− s). This certainly has independent
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increments since W (t+ h)−W (t) ∼ N(0, h) which is independent of t. Moreover,
this also suggests that Brownian motion can be equivalently characterized as follows.

Definition 1.3. A Brownian motion is a continuous process W such that:
(1) W has independent increments, and
(2) For s < t, W (t)−W (s) ∼ N(0, σ2(t− s)).

Remark 1.4. A standard (one dimensional) Brownian motion is one for which
W (0) = 0 and σ = 1.

2. A brief review of probability

In modern probability we usually start with a probability triple (Ω,G,P ).
(1) Ω is a non-empty set called the sample space.
(2) G is a σ-algebra. This is a non-empty collection of events (subsets of Ω) of

which the probability is known.
(3) P is a probability measure. For any event A ∈ G, P (A) represents the

probability of the event A occurring.
A subtle, but important, point in this framework is the in most case G is usually

not the collection of all subsets of Ω, but only a collection of some subsets of Ω. In fact,
in most interesting examples, it is impossible to define the probability of arbitrary
subsets of Ω consistently (i.e. in a manner that satisfies the required properties
listed below), and we thus restrict ourselves to only talking about probabilities of
elements of elements of the σ-algebra G.

In order to be a probability space, the triple (Ω,G,P ) is required to satisfy
certain properties. First the σ-algebra G must satisfy the following:

(1) It must be closed under compliments. That is, if A ∈ G, then Ac ∈ G.
(2) It must be closed under countable unions. That us, if A1, A2, . . . are all

elements of G, then the union ∪∞1 Ai is also an element of G.
The precise mathematical definition of a σ-algebra is simply a non-empty collection
of sets that satisfies the above two properties. Of course, if G satisfies the above
properties then one can quickly deduce the following:

(3) The empty set ∅ and the whole space Ω are elements of G.
(4) If A1, A2, . . . are all elements of G, then the intersection ∩∞1 Ai is also an

element of G.
(5) If A,B are events in G, then A−B is also an event in G.

The reason for requiring the above properties is that we expect G is the collection
of events of which the probability is known (or of which the probability can be
deduced by performing repeated trials of some experiment). If you can deduce the
probability of an event A, you should certainly be able to deduce the probability
of Ac. Similarly, if you can deduce the probabilities of A,B, you should be able to
deduce the probability of A ∪B and A ∩B. The possibly surprising point above is
that we don’t require that G be closed under finite unions, but we require it is closed
under countable unions. The reason for this is that we would like our framework to
allow us to perform repeated trials of an experiment and take limits.

Next, we turn our attention to the probability measure P . We require that P
satisfies the following properties:

(1) For each A ∈ G, P (A) ∈ [0, 1]. Moreover, P (∅) = 0, and P (Ω) = 1.
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(2) (Countable additivity) Given pairwise disjoint events A1, A2, · · · ∈ G, we
have

P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) .

The above two properties are precisely the formal definition of a probability measure.
Recall that in probability we require that the probability of mutually exclusive
events add. The second property above is a generalization of this to countably many
events.

Using the above properties, one can quickly verify that P also satisfies the
following properties:

(1) P (Ac) = 1 − P (A). More generally, if A,B ∈ G with A ⊆ B, then
P (B −A) = P (B)− P (A).

(2) If A1 ⊆ A2 ⊆ A3 · · · and each Ai ∈ G then P (∪Ai) = limn→∞P (An).
(3) If A1 ⊇ A2 ⊇ A3 · · · and each Ai ∈ G then P (∩Ai) = limn→∞P (An).

We now describe random variables in the above context. In discrete probability,
random variables are usually just real valued functions defined on the sample space.
In our context, however, we need to be a bit more careful. If X is a random variable,
then one should always be able to assign probabilities to questions such as “Is X
positive?” or “Does X belong to the interval (0, 1)?”.

If X is simply a function from Ω to R, then to compute the probability that
X is positive, we should define A = {ω ∈ Ω |X(ω) > 0}, and then compute P (A).
This, however, is only possible if A ∈ G; and since G is usually not the entire power
set of Ω, we should take care to ensure that all questions we might ask about the
random variable X can be answered by only computing probabilities of events in G,
and not arbitrary subsets of Ω. For this reason, we define random variables as
follows.

Definition 2.1. A random variable is a G-measurable function X : Ω → R.
That is, a random variable is a function X : Ω→ R such that for every α ∈ R, the
set {ω ∈ Ω |X(ω) 6 α} is guaranteed to be an element of G. (Such functions are
also called G-measurable, measurable with respect to G, or simply measurable if the
σ-algebra in question is clear from the context.)

Remark 2.2. The argument ω is always suppressed when writing random
variables. That is, the event {ω ∈ Ω |X(ω) 6 α} is simply written as {X 6 α}.

Remark 2.3. Note for any random variable, {X > α} = {X 6 α}c which must
also belong to G since G is closed under complements. One can check that for every
α < β ∈ R the events {X < α}, {X > α}, {X > α}, {X ∈ (α, β)}, {X ∈ [α, β)},
{X ∈ (α, β]} and {X ∈ (α, β)} are all also elements of G.

Thus to (for instance) compute the chance that X lies strictly between two
real numbers α and β, we consider the event {X ∈ (α, β)}. By Remark 2.3 this
is guaranteed to be an element of G, and thus we can compute the probability of
it using P . Hence, the quantity P ({X ∈ (α, β)}) is mathematically well defined,
and represents the chance that the random variable X takes values in the interval
(α, β). For brevity, we almost always omit the outermost curly braces and write
P (X ∈ (α, β)) for P ({X ∈ (α, β)}).
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Remark 2.4. One can check that if X, Y are random variables then so are
X ± Y , XY , X/Y (when defined), |X|, X ∧ Y and X ∨ Y . In fact if f : R→ R is
any reasonably nice (more precisely, a Borel measurable) function, f(X) is also a
random variable.

Example 2.5. Given A ⊆ Ω, define indicator function of A by

1A(ω) def=
{

1 ω ∈ A ,
0 ω 6∈ A .

One can check that 1A is a (G-measurable) random variable if and only if A ∈ G.

Example 2.6. For M ∈ N, i ∈ {1, . . . ,M}, ai ∈ R and Ai ∈ G be such that
Ai ∩Aj = ∅ for i 6= j, and define

(2.1) X
def=

M∑
i=1

ai1Ai
.

Then X is a (G-measurable) random variable. (Such variables are called simple
random variables.)

The next important concept concerning random variables is that of expectation,
which we assume the reader is familiar with in the discrete setting. In the measure
theoretic framework, the expectation of a random variable is the Lebesgue integral,
and is denoted by2

EX
def=
∫

Ω
X dP .

The precise construction of the Lebesgue integral, however, is to lengthy to be
presented here, and we only present a brief summary.

If a random variable X only takes on finitely many values a1, . . . an, then the
expectation of X is given by

(2.2) EX
def=

n∑
i=1

aiP (X = ai) .

This means that for any simple random variable of the form (2.1), the expectation
is given by (2.2). For general random variables (i.e. random variables that are not
simple), we can compute by expressing them as a limit of simple random variables.
Namely, we can compute EX by

EX = lim
n→∞

E
( n2−1∑
k=−n2

k

n
1{ k

n6X< k+1
n }

)
= lim
n→∞

n2−1∑
k=−n2

k

n
P
(k
n
6 X <

k + 1
n

)
,

for instance.
The above description, however, is only of theoretical importance and is not

used to compute in practice. Here are a few computation rules and properties of
expectations that will be useful later.

2If A ∈ G we define ∫
A

Y dP
def= E(1AY ) ,

and when A = Ω we will often omit writing it.
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(1) (Linearity) If α ∈ R and X,Y are random variables, then E(X + αY ) =
EX + αEY .

(2) (Positivity) If X > 0 almost surely,3 then EX > 0. Moreover, if X > 0
almost surely, EX > 0. Consequently, (using linearity) if X 6 Y almost
surely then EX 6 EY .

(3) (Layer Cake formula) If X > 0 almost surely, then

EX =
∫ ∞

0
P (X > t) dt .

More generally, if ϕ is a increasing differentiable function with ϕ(0) = 0
then

Eϕ(X) =
∫ ∞

0
ϕ′(t) P (X > t) dt .

(4) (Unconscious Statistician Formula) If the probability density function of
X is p, and f is any (Borel measurable) function, then

(2.3) Ef(X) =
∫ ∞
−∞

f(x)p(x) dx .

The proof of these properties goes beyond the scope of these notes. We do, how-
ever, make a few remarks. It turns out that the proof of positivity in this framework
is immediate, however the proof of linearity is surprisingly not as straightforward as
you would expect. While it is easy to verify linearity for simple random variables, for
general random variables, the proof of linearity requires an approximation argument.
The full proof of this involves either the dominated or monotone convergence theorem
which guarantee lim EXn = E limXn, under modest assumptions.

The layer cake formula can be proved by drawing a graph of X with Ω on the
horizontal axis. Now EX should be the “area under the curve”, which is usually
computed by slicing the region into vertical strips and adding up the area of each
strip. If, instead, you compute the area by slicing the region into horizontal strips,
you get exactly the layer cake formula!

Finally, unconscious statistician formula might already be familiar to you. In
fact, the reason for this somewhat unusual name is that many people use this result
“unconsciously” treating it as the definition, without realizing it is in fact a theorem
that requires proof. To elaborate further, introductory (non-measure theoretic)
probability courses usually stipulate that if a random variable X has density pX ,
then

EX =
∫ ∞
−∞

xpX(x) dx .

Thus if you set Y = f(X) for some function f , we should have

EY =
∫ ∞
−∞

ypY (y) dy .

If we could compute pY in terms of pX and f , you could substitute it in the above
formula, and obtain a formula for EY in terms of pX and f . Unfortunately, this
isn’t easy to do. Namely, if f isn’t monotone, it isn’t easy to write down pY in
terms of pX . It turns out, however, that even though we can’t easily write down pY
in terms of f and pX , we can prove that EY can be computed using (2.3).

3By X > 0 almost surely, we mean that P (X > 0) = 1. More generally, we say an event
occurs almost surely if the probability of it occurring is 1.
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Since discussing these results and proofs further at this stage will will lead us
too far astray, we invite the curious to look them up in any standard measure theory
book. The main point of this section was to introduce you to a framework which is
capable of describing and studying the objects we will need for the remainder of the
course.

We conclude this section by revisiting the notion of a continuous process defined
in the previous section. Recall, our definition so far was that a process is simply
a collection of random variables {X(t)}t>0, and a continuous process is a process
whose trajectories are continuous. In our context, a process can now be thought of
as a function

X : Ω× [0,∞)→ R .
For every fixed t, the function ω 7→ X(ω, t) is required to be a random variable (i.e.
measurable with respect to G). Since the ω is usually suppressed in probability, this
random variable is simply denoted by X(t).

The trajectory of X is now the slice of X for a fixed ω. Namely, for any fixed
ω ∈ Ω, the function t 7→ X(ω, t) is the trajectory of X. Saying a process has
continuous trajectories means that for every ω ∈ Ω, the trajectory t 7→ X(ω, t) is
continuous as a function of t. Explicitly, this means for every t > 0 and ω ∈ Ω we
have

lim
s→t

X(ω, s) = X(ω, s) .

Following our convention of “never writing ω”, this is exactly (1.3) as we had before.

3. Independence of random variables

Recall two events A,B are independent if P (A |B) = P (A). This is of course
immediately implies the multiplication law:

P (A ∩B) = P (A)P (B) .
The notion of independence for random variables requires that every event that is
observable from one is necessarily independent of every event that is observable
from the other.

For example, suppose X and Y are two random variables. For any a, b ∈ R, the
event {X ∈ (a, b)} can be observed using the random variable X. Similarly, any
c ∈ R, the event {Y > c} can be observed using the random variable Y . If X and
Y were independent, then the events {X ∈ (a, b)} would necessarily be independent
of the event {Y > c}. Of course, this is just an example and you can write down all
sorts of other events (e.g. X2 − eX < 15, or sin(Y + 3) < .5). No matter how you
do it, if X and Y are independent, then any event observable from X alone must
necessarily be independent of any event observable from Y alone.

Since the notion of “all events that can be observed from the random variable X”
will be useful later, we denote it by σ(X).

Definition 3.1. Let X be a random variable on (Ω,G,P ). We define the
σ-algebra generated by X to be the σ algebra obtained by only using events that
are observable using the random variable X.

One can mathematically prove that σ(X) is generated by the events {X 6 α}
for every α ∈ R. Namely, if a σ algebra contains the events {X 6 α} for every α ∈ R,
then it must necessarily contain all events observable through the random variable X.
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In particular, it will contain events of the form {X ∈ [α, β)}, eX+1 < sinX, or any
other complicated formula that you can write down.

As mentioned above, the σ-algebra σ(X) represents all the information one can
obtain by observing X. To illustrate this, consider the following example: A card
is drawn from a shuffled deck, and you win a dollar if it is red, and lose one if it
is black. Now the likely hood of drawing any particular card is 1/52. However, if
you are blindfolded and only told the outcome of the game, you have no way to
determine that each gard is picked with probability 1/52. The only thing you will
be able to determine is that red cards are drawn as often as black ones.

This is captured by σ-algebra as follows. Let Ω = {1, . . . , 52} represent a deck
of cards, G = P(Ω), and define P (A) = card(A)/52. Let R = {1, . . . 26} represent
the red cards, and B = Rc represent the black cards. The outcome of the above
game is now the random variable X = 1R − 1B , and you should check that σ(X) is
exactly {∅, R,B,Ω}.

With this, we can now revisit the notion of two random variables being inde-
pendent.

Definition 3.2. We say the random variables X1, . . . , XN are independent if
for every i ∈ {1 . . . N} and every Ai ∈ σ(Xi) the events A1, . . . , AN are independent.

Remark 3.3. Recall, a collection of events A1, . . . , AN is said to be independent
if any sub collection {Ai1 , . . . , Aik} satisfies the multiplication law

P
( k⋂
i=1

Aik

)
=

d∏
i=1

P (Ai) .

Note that this is a stronger condition than simply requiring
P
(
A1 ∩A2 ∩ · · · ∩AN

)
= P (A1) P (A2) · · ·P (AN ) .

In practice, one never tests independence of random variables using the above
multiplication law.

Proposition 3.4. Let X1, . . . , XN be N random variables. The following are
equivalent:

(1) The random variables X1, . . . , XN are independent.
(2) For every α1, . . . , αN ∈ R, we have

P
( N⋂
j=1
{Xj 6 αj}

)
=

N∏
j=1

P (Xj 6 αj)

(3) For every collection of bounded continuous functions f1, . . . , fN we have

E
[ N∏
j=1

fj(Xj)
]

=
N∏
j=1

Efj(Xj) .

(4) For every ξ1, . . . , ξN ∈ R we have

E exp
(
i

N∑
j=1

ξjXj

)
=

N∏
j=1

E exp(iξjXj) , where i =
√
−1 .

Remark 3.5. It is instructive to explicitly check each of these implications
when N = 2 and X1, X2 are simple random variables.
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Remark 3.6. The intuition behind the above result is as follows: Since the events
{Xj 6 αj} generate σ(Xj), we expect the first two properties to be equivalent. Since
1(−∞,αj ] can be well approximated by continuous functions, we expect equivalence
of the second and third properties. The last property is a bit more subtle: Since
exp(a+ b) = exp(a) exp(b), the third clearly implies the last property. The converse
holds because of “completeness of the complex exponentials” or Fourier inversion,
and again a through discussion of this will lead us too far astray.

Remark 3.7. The third implication above implies that independent random
variables are uncorrelated. Namely, if X,Y are independent random variables, then
(3.1) E(XY ) = (EX)(EY ) .
The converse, is of course false. Namely if (3.1) holds, there is no reason we should
have

Ef(X)g(Y ) = Ef(X)Eg(Y ) ,
for every bounded continuous pair of functions f, g as required by the third part
in Proposition 3.4. However, if (X,Y ) is jointly normal and X,Y are uncorrelated,
then the normal correlation theorem guarantees that X,Y are independent.

Remark 3.8. If moment generating functions of the random variables are defined
in an interval around 0, then one can test independence using real exponentials
instead of the complex exponentials used in the last condition in Proposition 3.4.
Explicitly, in this case X1, . . . , XN are independent if and only if for every t1, . . . , tN
in some small interval containing 0 we have

E exp
( N∑
j=1

tjXj

)
=

N∏
j=1

E exp(tjXj) .

Example 3.9 (Covariance of Brownian motion). The independence of in-
crements allows us to compute covariances of Brownian motion easily. Sup-
pose W is a standard Brownian motion, and s < t. Then we know W (s) ∼
N(0, s), W (t) −W (s) ∼ N(0, t − s) and is independent of W (s). Consequently
(W (s),W (t)−W (s)) is jointly normal with mean 0 and covariance matrix ( s 0

0 t−s ).
This implies that (W (s),W (t)) is a jointly normal random variable. Moreover we
can compute the covariance by

EW (s)W (t) = EW (s)(W (t)−W (s)) + EW (s)2 = s .

In general if you don’t assume s < t, the above immediately implies EW (s)W (t) =
s ∧ t.

4. Conditional probability

Our next goal is to understand conditional probability, and we do it directly here
to help understanding. In the next section we will construct conditional expectations
independently, and the reader may choose to skip this section.

Suppose you have an incomplete deck of cards which has 10 red cards, and 20
black cards. Suppose 5 of the red cards are high cards (i.e. ace, king, queen, jack
or 10), and only 4 of the black cards are high. If a card is chosen at random, the
conditional probability of it being high given that it is red is 1/2, and the conditional
probability of it being high given that it is black is 1/5. Our aim is to encode both
these facts into a single entity.
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We do this as follows. Let R,B denote the set of all red and black cards
respectively, and H denote the set of all high cards. A σ-algebra encompassing all
the above information is exactly

G def=
{
∅, R,B,H,Hc, R ∩H,B ∩H,R ∩Hc, B ∩Hc,

(R ∩H) ∪ (B ∩Hc), (R ∩Hc) ∪ (B ∩H),Ω
}

and you can explicitly compute the probabilities of each of the above events. A
σ-algebra encompassing only the color of cards is exactly

G def= {∅, R,B,Ω} .

Now we define the conditional probability of a card being high given the color
to be the random variable

P (H | C) def= P (H |R)1R + P (H |B)1B = 1
21R + 1

51B .

To emphasize:
(1) What is given is the σ-algebra C, and not just an event.
(2) The conditional probability is now a C-measurable random variable and

not a number.
To see how this relates to P (H |R) and P (H |B) we observe∫

R

P (H | C) dP
def= E

(
1RP (H | C)

)
= P (H |R) P (R) .

The same calculation also works for B, and so we have

P (H |R) = 1
P (R)

∫
R

P (H | C) dP and P (H |B) = 1
P (B)

∫
B

P (H | C) dP .

Our aim is now to generalize this to a non-discrete scenario. The problem with
the above identities is that if either R or B had probability 0, then the above would
become meaningless. However, clearing out denominators yields∫

R

P (H | C) dP = P (H ∩R) and
∫
B

P (H | C) dP = P (H ∩B) .

This suggests that the defining property of P (H | C) should be the identity

(4.1)
∫
C

P (H | C) dP = P (H ∩ C)

for every event C ∈ C. Note C = {∅, R,B,Ω} and we have only checked (4.1) for
C = R and C = B. However, for C = ∅ and C = Ω, (4.1) is immediate.

Definition 4.1. Let (Ω,G,P ) be a probability space, and F ⊆ G be a σ-algebra.
Given A ∈ G, we define the conditional probability of A given F , denoted by P (A|F)
to be an F-measurable random variable that satisfies

(4.2)
∫
F

P (H | F) dP = P (H ∩ F ) for every F ∈ F .

Remark 4.2. Showing existence (and uniqueness) of the conditional probability
isn’t easy, and relies on the Radon-Nikodym theorem, which is beyond the scope of
this course.
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Remark 4.3. It is crucial to require that P (H |F) is measurable with respect to
F . Without this requirement we could simply choose P (H |F) = 1H and (4.2) would
be satisfied. However, note that if H ∈ F , then the function 1F is F-measurable,
and in this case P (H | F) = 1F .

Remark 4.4. In general we can only expect (4.2) to hold for all events in F ,
and it need not hold for events in G! Indeed, in the example above we see that∫

H

P (H | C) dP = 1
2P (R ∩H) + 1

5P (B ∩H) = 1
2 ·

5
30 + 1

5 ·
4
30 = 11

100
but

P (H ∩H) = P (H) = 3
10 6=

11
100 .

Remark 4.5. One situation where you can compute P (A | F) explicitly is when
F = σ({Fi}) where {Fi} is a pairwise disjoint collection of events whose union is all
of Ω and P (Fi) > 0 for all i. In this case

P (A | F) =
∑
i

P (A ∩ Fi)
P (Fi)

1Fi
.

5. Conditional expectation.

Conditional expectation arises when you have a random variable X, and want
to best approximate it using only a (strict) subset of events. Precisely, suppose
F ⊆ G is a σ-sub-algebra of G. That is, F is a σ-algebra, and every event in F is
also an event in G. Now to best approximate a (G-measurable) random variable X
using only events in F , one would like to find an F measurable random variable Z
that minimizes

E|X − Z|2 .
The minimizer is known as the conditional expectation of X given F , and denoted
by E(X | F). That is,

(5.1) E(X | F) def= arg min
{

E|X − Z|2
∣∣ Z is a G-measurable random variable

}
.

While the above provides good intuition to the notion of conditional expectation, it
is not as convenient to work with mathematically. For instance, the above requires
EX2 <∞, and we will often require conditional expectations of random variables
that do not have this property.

To motivate the other definition of conditional expectation, we use the following
example. Consider an incomplete deck of cards which has 10 red cards, of which 5
are high, and 20 black cards, of which 4 are high. Let X be the outcome of a game
played through a dealer who pays you $1 when a high card is drawn, and charges
you $1 otherwise. However, you are standing too far away from the dealer to tell
whether the card drawn was high or not. You can only tell the color, and whether
or not you won.

After playing this game often the only information you can deduce is that your
expected return is 0 when a red card is drawn and −3/5 when a black card is drawn.
That is, you approximate the game outcome X by the random variable

Y
def= 01R −

3
51B ,

where, as before R,B denote the set of all red and black cards respectively.
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Note that the events you can deduce information about by playing this game
(through the dealer) are exactly elements of the σ-algebra C = {∅, R,B,Ω}. By
construction, that your approximation Y is C-measurable, and it is easy to verify
that
(5.2) Y = arg min{E(X − Z)2 | Z is a C-measurable random variable} .
That is Y = E(X | C) according to the definition (5.1). In this case, we can also
verify that Y has the same averages as X on all elements of C. That is, for every
C ∈ C, we have4

(5.3)
∫
C

Y dP =
∫
C

X dP .

It turns out that in general, one can show abstractly that any C measurable random
variable that satisfies (5.3), must in fact also be the minimizer in (5.2). We will
thus use (5.3) to define conditional expectation.

Definition 5.1. Let X be a G-measurable random variable, and F ⊆ G be a
σ-sub-algebra. We define E(X | F), the conditional expectation of X given F to be
a random variable such that:

(1) E(X | F) is F-measurable.
(2) For every F ∈ F , we have the partial averaging identity:

(5.4)
∫
F

E(X | F) dP =
∫
F

X dP .

Remark 5.2. We can only expect (5.4) to hold for all events F ∈ F . In
general (5.4) will not hold for events G ∈ G − F .

Remark 5.3. An equivalent way of phrasing (5.4) is to require
(5.5) E(XY ) = E

(
E(X

∣∣ F)Y
)

for every F measurable random variable Y . As before, we can only expect (5.5)
to hold when Y is F measurable. In general (5.5) will not hold when Y is not F
measurable.

Remark 5.4. Choosing F = Ω we see EE(X | F) = EX.
Remark 5.5. More concretely, suppose Y is another random variable and

F = σ(Y ). Then it turns out that one can find a special (non-random) function g
such that E(X | F) = g(Y ). Moreover, the function g is characterized by the
property that

E
(
f(Y )X

)
= E

(
f(Y )g(Y )

)
.

for every bounded continuous function f .
Remark 5.6. Under mild integrability assumptions one can show that con-

ditional expectations exist. This requires the Radon-Nikodym theorem and goes
beyond the scope of this course. If, however, F = σ({Fi}) where {Fi} is a pairwise
disjoint collection of events whose union is all of Ω and P (Fi) > 0 for all i, then

E(X | F) =
∞∑
i=1

1Fi

P (Fi)

∫
Fi

X dP .

4Recall
∫
C
Y dP is simply E(1CY ). That is

∫
C
Y dP is the expectation of the random

variable which is Y on the event C, and 0 otherwise.
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Remark 5.7. Once existence is established it is easy to see that conditional
expectations are unique. Namely, if Y is any F-measurable random variable that
satisfies ∫

F

Y dP =
∫
F

X dP for every F ∈ F ,

then Y = E(X | F ). Often, when computing the conditional expectation, we will
“guess” what it is, and verify our guess by checking measurablity and the above
partial averaging identity.

Proposition 5.8. If X is F-measurable, then E(X | F) = X. On the other
hand, if X is independent5 of F then E(X | F) = EX.

Proof. If X is F-measurable, then clearly the random variable X is both
F-measurable and satisfies the partial averaging identity. Thus by uniqueness, we
must have E(X | F) = X.

Now consider the case when X is independent of F . Suppose first X =
∑
ai1Ai

for finitely many sets Ai ∈ G. Then for any F ∈ F ,∫
F

X dP =
∑

aiP (Ai ∩ F ) = P (F )
∑

aiP (Ai) = P (F )EX =
∫
F

EX dP .

Thus the constant random variable EX is clearly F-measurable and satisfies the
partial averaging identity. This forces E(X | F) = EX. The general case when X
is not simple follows by approximation. �

The above fact has a generalization that is tremendously useful when computing
conditional expectations. Intuitively, the general principle is to average quantities
that are independent of F , and leave unchanged quantities that are F measurable.
This is known as the independence lemma.

Lemma 5.9 (Independence Lemma). Suppose X,Y are two random variables
such that X is independent of F and Y is F-measurable. Then if f = f(x, y) is any
function of two variables we have

E
(
f(X,Y )

∣∣ F) = g(Y ) ,

where g = g(y) is the function6 defined by

g(y) def= Ef(X, y) .

Remark. If pX is the probability density function of X, then the above says

E
(
f(X,Y )

∣∣ F) =
∫
R
f(x, Y ) pX(x) dx .

Indicating the ω dependence explicitly for clarity, the above says

E
(
f(X,Y )

∣∣ F)(ω) =
∫
R
f(x, Y (ω)) pX(x) dx .

5We say a random variable X is independent of σ-algebra F if for every A ∈ σ(X) and B ∈ F
the events A and B are independent.

6To clarify, we are defining a non-random function g = g(y) here when y ∈ R is any real
number. Then, once we compute g, we substitute in y = Y (= Y (ω)), where Y is the given random
variable.
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Remark 5.10. Note we defined and motivated conditional expectations and
conditional probabilities independently. They are however intrinsically related:
Indeed, E(1A | F) = P (A | F), and this can be checked directly from the definition.

As we will see shortly, computing conditional expectations will be a very
important part of pricing securities. Most of the time, all that is required to
compute conditional expectations are the following properties.

Proposition 5.11. Conditional expectations satisfy the following properties.
(1) (Linearity) If X,Y are random variables, and α ∈ R then

E(X + αY | F) = E(X | F) + αE(Y | F) .

(2) (Positivity) If X 6 Y , then E(X | F) 6 E(Y | F) (almost surely).
(3) If X is F measurable and Y is an arbitrary (not necessarily F-measurable)

random variable then (almost surely)

E(XY | F) = XE(Y | F) .

(4) (Tower property) If E ⊆ F ⊆ G are σ-algebras, then (almost surely)

E(X | E) = E
(

E(X | F)
∣∣∣ E) .

Proof. The first property follows immediately from linearity. For the second
property, set Z = Y −X and observe∫

E(Z|F)
E(Z | F) dP =

∫
E(Z|F)

Z dP > 0 ,

which can only happen if P (E(Z | F) < 0) = 0. The third property is easily checked
for simple random variables, and follows in general by approximating. The tower
property follows immediately from the definition. �

As an illustration, of how the above properties come in handy, we show how
they can be used to deduce (5.5).

Proposition 5.12. If F ⊆ G is a σ-sub-algebra, X is a G-measurable random
variable, and Y is an F-measurable random variable, then

E(XY ) = E
(
E(X

∣∣ F)Y
)

Proof. Using Remark 5.4 and then Proposition 5.11 part (3), we see

E(XY ) = E
(
E(XY | F)

)
= E

(
YE(X | F)

)
,

as desired. �

Finally we conclude this section by showing that the conditional expectation of
a random variable according to Definition 5.1 is precisely the minimizer as in (5.1).

Proposition 5.13. Let X be a square integrable G-measurable random variable,
and F ⊆ G be a σ-sub-algebra of G. Then amongst all F-measurable random
variables Z, the one that minimizes

E(X − Z)2

is precisely Z = E(X | F).
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Proof. Since E(X | F) is known to be an F-measurable random variable, we
only need to show that for any (other) F-measurable random variable Z we have

E(X − Z)2 > E
(
(X −E(X

∣∣ F))2) .
To see this, note

E(X − Z)2 = E(X −E(X | F) + E(X | F)− Z)2

= E(X −E(X | F))2 + E((X | F)− Z)2

+ 2E
(

(X −E(X | F)︸ ︷︷ ︸
I

)(E(X | F)− Z︸ ︷︷ ︸
II

)
)

Since term II is F measurable, we can use (5.5) to replace X with E(X | F ) in
term I. This yields

E(X − Z)2 = E(X −E(X | F))2 + E((X | F)− Z)2

+ 2E
(

(E(X | F)−E(X | F))(E(X | F)− Z)
)

= E(X −E(X | F))2 + E((X | F)− Z)2 > E(X −E(X | F))2 ,

as desired. �

6. The Martingale Property

A martingale is “fair game”. Suppose you are playing a game and M(t) is your
cash stockpile at time t. As time progresses, you learn more and more information
about the game. For instance, in blackjack getting a high card benefits the player
more than the dealer, and a common card counting strategy is to have a “spotter”
betting the minimum while counting the high cards. When the odds of getting a
high card are favorable enough, the player will signal a “big player” who joins the
table and makes large bets, as long as the high card count is favorable. Variants of
this strategy have been shown to give the player up to a 2% edge over the house.

If a game is a martingale, then this extra information you have acquired can
not help you going forward. That is, if you signal your “big player” at any point,
you will not affect your expected return.

Mathematically this translates to saying that the conditional expectation of your
stockpile at a later time given your present accumulated knowledge, is exactly the
present value of your stockpile. Our aim in this section is to make this precise.

6.1. Adapted processes and filtrations. Let X be any stochastic process
(for example Brownian motion). For any t > 0, we’ve seen before that σ(X(t))
represents the information you obtain by observing X(t). Accumulating this over
time gives us the filtration. To introduce this concept, we first need the notion of a
σ algebra generated by a family of sets.

Definition 6.1. Given a collection of sets Aα, where α belongs to some (possibly
infinite) index set A, we define σ({Aα}) to be the smallest σ-algebra that contains
each of the sets Aα.

That is, if G = σ({Aα}), then we must have each Aα ∈ G. Since G is a σ-algebra,
all sets you can obtain from these by taking complements, countable unions and
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countable intersections intersections must also belong to G.7 The fact that G is the
smallest σ-algebra containing each Aα also means that if G′ is any other σ-algebra
that contains each Aα, then G ⊆ G′.

Remark 6.2. The smallest σ-algebra under which X is a random variable
(under which X is measurable) is exactly σ(X). It turns out that σ(X) = X−1(B) =
{X ∈ B |B ∈ B}, where B is the Borel σ-algebra on R. Here B is the Borel σ-algebra,
defined to be the σ-algebra on R generated by all open intervals.

Definition 6.3. Given a stochastic process X, the filtration generated by X is
the family of σ-algebras {FXt | t > 0} where

FXt
def= σ

(⋃
s6t

σ(Xs)
)
.

That is, FXt is all events that can be observed using only the random variables
Xs when s 6 t. Clearly each FXt is a σ-algebra, and if s 6 t, FXs ⊆ FXt . A family
of σ-algebras with this property is called a filtration.

Definition 6.4. A filtration is a family of σ-algebras {Ft | t > 0} such that
whenever s 6 t, we have Fs ⊆ Ft.

In our case, the filtration we work with will most often be the Brownian filtration,
i.e. the filtration generated by Brownian motion. However, one can (and often needs
to) consider more general filtrations. In this case the intuition we use is that the
σ-algebra Ft represents the information accumulated up to time t (i.e. all events
whose probabilities can be deduced up to time t). When given a filtration, it is
important that all stochastic processes we construct respect the flow of information,
and do not look into the future. This is of course natural: trading / pricing strategies
can not rely on the price at a later time, and gambling strategies do not know the
outcome of the next hand. Mathematically this property is called adapted, and is
defined as follows.

Definition 6.5. A stochastic process X is said to be adapted to a filtration {Ft |
t > 0} if for every t the random variable X(t) is Ft measurable (i.e. {X(t) 6 α} ∈ Ft
for every α ∈ R, t > 0).

Clearly a process X is adapted with respect to the filtration it generates {FXt }.

6.2. Martingales. Recall, a martingale is a “fair game”. Using conditional
expectations, we can now define this precisely.

Definition 6.6. A stochastic process M is a martingale with respect to a
filtration {Ft} if:

(1) M is adapted to the filtration {Ft}.
(2) For any s < t we have E(M(t) | Fs) = M(s), almost surely.

7Usually G contains much more than all countable unions, intersections and complements of
the Aα’s. You might think you could keep including all sets you generate using countable unions
and complements and arrive at all of G. It turns out that to make this work, you will usually have
to do this uncountably many times!

This won’t be too important within the scope of these notes. However, if you read a rigorous
treatment and find the authors using some fancy trick (using Dynkin systems or monotone classes)
instead of a naive countable unions argument, then the above is the reason why.
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Remark 6.7. A sub-martingale is an adapted process M for which we have
E(M(t) |Fs) >M(s), and a super-martingale if E(M(t) |Fs) 6M(s). Thus EM(t)
is an increasing function of time if M is a sub-martingale, constant in time if M is
a martingale, and a decreasing function of time if M is a super-martingale.

Remark 6.8. It is crucial to specify the filtration when talking about martin-
gales, as it is certainly possible that a process is a martingale with respect to one
filtration but not with respected to another. For our purposes the filtration will
almost always be the Brownian filtration (i.e. the filtration generated by Brownian
motion).

Example 6.9. Let {Ft} be a filtration, F∞ = σ(∪t>0Ft), and X be any F∞-
measurable random variable. The process M(t) def= E(X∞ | Ft) is a martingale with
respect to the filtration {Ft}.

6.3. The martingale property of Brownian motion. In discrete time a
random walk is a martingale, so it is natural to expect that in continuous time
Brownian motion is a martingale as well.

Theorem 6.10. Let W be a Brownian motion, Ft = FWt be the Brownian
filtration. Brownian motion is a martingale with respect to this filtration.

Proof. By independence of increments, W (t)−W (s) is certainly independent
of W (r) for any r 6 s. Since Fs = σ(∪r6sσ(W (r))) we expect that W (t)−W (s) is
independent of Fs. Consequently

E(W (t) | Fs) = E(W (t)−W (s) | Fs) + E(W (s) | Fs) = 0 +W (s) = W (s) . �

Theorem 6.11. Let W be a standard Brownian motion (i.e. a Brownian motion
normalized so thatW (0) = 0 and Var(W (t)) = t). For any C1,2

b function8 f = f(t, x)
the process

M(t) def= f(t,W (t))−
∫ t

0

(
∂tf(s,W (s)) + 1

2∂
2
xf(s,W (s))

)
ds

is a martingale (with respect to the Brownian filtration).
Proof. This is an extremely useful fact about Brownian motion follows quickly

from the Itô formula, which we will discuss later. However, at this stage, we can
provide a simple, elegant and instructive proof as follows.

Adaptedness of M is easily checked. To compute E(M(t) | Fr) we first observe
E
(
f(t,W (t))

∣∣ Fr) = E
(
f(t, [W (t)−W (r)] +W (r))

∣∣ Fr).
Since W (t)−W (r) ∼ N(0, t− r) and is independent of Fr, the above conditional
expectation can be computed by

E
(
f(t, [W (t)−W (r)] +W (r))

∣∣ Fr) =
∫
R
f(t, y +W (r))G(t− r, y) dy ,

where
G(τ, y) = 1√

2πτ
exp
(−y2

2τ

)
8Recall a function f = f(t, x) is said to be C1,2 if it is C1 in t (i.e. differentiable with respect

to t and ∂tf is continuous), and C2 in x (i.e. twice differentiable with respect to x and ∂xf , ∂2
xf

are both continuous). The space C1,2
b

refers to all C1,2 functions f for which and f , ∂tf , ∂xf , ∂2
xf

are all bounded functions.
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is the density of W (t)−W (r).
Similarly

E
(∫ t

0

(
∂tf(s,W (s)) + 1

2∂
2
xf(s,W (s))

)
ds
∣∣∣ Fr)

=
∫ r

0

(
∂tf(s,W (s)) + 1

2∂
2
xf(s,W (s))

)
ds

+
∫ t

r

∫
R

(
∂tf(s, y +W (r)) + 1

2∂
2
xf(s, y +W (r))

)
G(s− r, y) dy ds

Hence

E(M(t) | Fr)−M(r) =
∫
R
f(t, y +W (r))G(t− r, y) dy

−
∫ t

r

∫
R

(
∂tf(s, y +W (r)) + 1

2∂
2
xf(s, y +W (r))

)
G(s− r, y) ds

− f(r,W (r)) .

We claim that the right hand side of the above vanishes. In fact, we claim the
(deterministic) identity

f(r, x) =
∫
R
f(t, y + x)G(t− r, y) dy

−
∫ t

r

∫
R

(
∂tf(s, y + x) + 1

2∂
2
xf(s, y + x))

)
G(s− r, y) dy ds

holds for any function f and x ∈ R. For those readers who are familiar with PDEs,
this is simply the Duhamel’s principle for the heat equation. If you’re unfamiliar with
this, the above identity can be easily checked using the fact that ∂τG = 1

2∂
2
yG and

integrating the first integral by parts. We leave this calculation to the reader. �

6.4. Stopping Times. For this section we assume that a filtration {Ft} is
given to us, and fixed. When we refer to process being adapted (or martingales),
we implicitly mean they are adapted (or martingales) with respect to this filtration.

Consider a game (played in continuous time) where you have the option to walk
away at any time. Let τ be the random time you decide to stop playing and walk
away. In order to respect the flow of information, you need to be able to decide
weather you have stopped using only information up to the present. At time t, event
{τ 6 t} is exactly when you have stopped and walked away. Thus, to respect the
flow of information, we need to ensure {τ 6 t} ∈ Ft.

Definition 6.12. A stopping time is a function τ : Ω→ [0,∞) such that for
every t > 0 the event {τ 6 t} ∈ Ft.

A standard example of a stopping time is hitting times. Say you decide to
liquidate your position once the value of your portfolio reaches a certain threshold.
The time at which you liquidate is a hitting time, and under mild assumptions on
the filtration, will always be a stopping time.

Proposition 6.13. Let X be an adapted continuous process, α ∈ R and τ be
the first time X hits α (i.e. τ = inf{t > 0 |X(t) = α}). Then τ is a stopping time
(if the filtration is right continuous).
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Theorem 6.14 (Doob’s optional sampling theorem). If M is a martingale and
τ is a bounded stopping time. Then the stopped process Mτ (t) def= M(τ ∧ t) is also a
martingale. Consequently, EM(τ) = EM(τ ∧ t) = EM(0) = EM(t) for all t > 0.

Remark 6.15. If instead of assuming τ is bounded, we assume Mτ is bounded
the above result is still true.

The proof goes beyond the scope of these notes, and can be found in any
standard reference. What this means is that if you’re playing a fair game, then you
can not hope to improve your odds by “quitting when you’re ahead”. Any rule by
which you decide to stop, must be a stopping time and the above result guarantees
that stopping a martingale still yields a martingale.

Remark 6.16. Let W be a standard Brownian motion, τ be the first hitting
time of W to 1. Then EW (τ) = 1 6= 0 = EW (t). This is one situation where the
optional sampling theorem doesn’t apply (in fact, Eτ =∞, and W τ is unbounded).

This example corresponds to the gambling strategy of walking away when you
make your “million”. The reason it’s not a sure bet is because the time taken to
achieve your winnings is finite almost surely, but very long (since Eτ =∞). In the
mean time you might have incurred financial ruin and expended your entire fortune.

Suppose the price of a security you’re invested in fluctuates like a martingale
(say for instance Brownian motion). This is of course unrealistic, since Brownian
motion can also become negative; but let’s use this as a first example. You decide
you’re going to liquidate your position and walk away when either you’re bankrupt,
or you make your first million. What are your expected winnings? This can be
computed using the optional sampling theorem.

Problem 6.1. Let a > 0 and M be any continuous martingale with M(0) =
x ∈ (0, a). Let τ be the first time M hits either 0 or a. Compute P (M(τ) = a) and
your expected return EM(τ).



CHAPTER 3

Stochastic Integration

1. Motivation

Suppose ∆(t) is your position at time t on a security whose price is S(t). If you
only trade this security at times 0 = t0 < t1 < t2 < · · · < tn = T , then the change
in the value of your wealth up to time T is given by

X(tn)−X(0) =
n−1∑
i=0

∆(ti)(S(ti+1)− S(ti))

If you are trading this continuously in time, you’d expect that a “simple” limiting
procedure should show that your wealth is given by the Riemann-Stieltjes integral:

X(T )−X(0) = lim
‖P‖→0

n−1∑
i=0

∆(ti)(S(ti+1)− S(ti)) =
∫ T

0
∆(t) dS(t) .

Here P = {0 = t0 < · · · < tn = T} is a partition of [0, T ], and ‖P‖ = max{ti+1− ti}.
This has been well studied by mathematicians, and it is well known that for the

above limiting procedure to “work directly”, you need S to have finite first variation.
Recall, the first variation of a function is defined to be

V[0,T ](S) def= lim
‖P‖→0

n−1∑
i=0
|S(ti+1)− S(ti)| .

It turns out that almost any continuous martingale S will not have finite first
variation. Thus to define integrals with respect to martingales, one has to do
something ‘clever’. It turns out that if X is adapted and S is an martingale, then the
above limiting procedure works, and this was carried out by Itô (and independently
by Doeblin).

2. The First Variation of Brownian motion

We begin by showing that the first variation of Brownian motion is infinite.

Proposition 2.1. If W is a standard Brownian motion, and T > 0 then

lim
n→∞

E

n−1∑
k=0

∣∣∣W(k + 1
n

)
−W

(k
n

)∣∣∣ =∞ .

Remark 2.2. In fact

lim
n→∞

n−1∑
k=0

∣∣∣W(k + 1
n

)
−W

(k
n

)∣∣∣ =∞ almost surely,

but this won’t be necessary for our purposes.

22
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Proof. Since W ((k + 1)/n)−W (k/n) ∼ N(0, 1/n) we know

E
∣∣∣W(k + 1

n

)
−W

(k
n

)∣∣∣ =
∫
R
|x|G

( 1
n
, x
)
dx = C√

n
,

where
C =

∫
R
|y|e−y

2/2 dy√
2π

= E|N(0, 1)| .

Consequently
n−1∑
k=0

E
∣∣∣W(k + 1

n

)
−W

(k
n

)∣∣∣ = Cn√
n

n→∞−−−−→∞ . �

3. Quadratic Variation

It turns out that the second variation of any square integrable martingale is
almost surely finite, and this is the key step in constructing the Itô integral.

Definition 3.1. Let M be any process. We define the quadratic variation of
M , denoted by [M,M ] by

[M,M ](T ) = lim
‖P‖→0

n−1∑
i=0

(∆iM)2 ,

where P = {0 = t1 < t1 · · · < tn = T} is a partition of [0, T ], and ∆iM =
M(ti+1)−M(ti).

Proposition 3.2. If W is a standard Brownian motion, then [W,W ](T ) = T
almost surely.

Proof. For simplicity, let’s assume ti = Ti/n. Note
n−1∑
i=0

(∆iW )2 − T =
n−1∑
i=0

(
W
( (i+ 1)T

n

)
−W

( iT
n

))2
− T =

n−1∑
i=0

ξi ,

where

ξi
def= (∆iW )2 − T

n
=
(
W
( (i+ 1)T

n

)
−W

( iT
n

))2
− T

n
.

Note that ξi’s are i.i.d. with distribution N(0, T/n)2 − T/n, and hence

Eξi = 0 and Var ξi = T 2(EN(0, 1)4 − 1)
n2 .

Consequently

Var
(n−1∑
i=0

ξi

)
= T 2(EN(0, 1)4 − 1)

n

n→∞−−−−→ 0 ,

which shows
n−1∑
i=0

(
W
( (i+ 1)T

n

)
−W

( iT
n

))2
− T =

n−1∑
i=0

ξi
n→∞−−−−→ 0 . �

Corollary 3.3. The process M(t) def= W (t)2 − [W,W ](t) is a martingale.
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Proof. We see

E(W (t)2− t | Fs) = E((W (t)−W (s))2 + 2W (s)(W (t)−W (s)) +W (s)2 | Fs)− t
= W (s)2 − s

and hence E(M(t) | Fs) = M(s). �

The above wasn’t a co-incidence. This property in fact characterizes the
quadratic variation.

Theorem 3.4. LetM be a continuous martingale with respect to a filtration {Ft}.
Then EM(t)2 < ∞ if and only if E[M,M ](t) < ∞. In this case the process
M(t)2− [M,M ](t) is also a martingale with respect to the same filtration, and hence
EM(t)2 −EM(0)2 = E[M,M ](t).

The above is in fact a characterization of the quadratic variation of martingales.

Theorem 3.5. If A(t) is any continuous, increasing, adapted process such that
A(0) = 0 and M(t)2 −A(t) is a martingale, then A = [M,M ].

The proof of these theorems are a bit technical and go beyond the scope of
these notes. The results themselves, however, are extremely important and will be
used subsequently.

Remark 3.6. The intuition to keep in mind about the first variation and the
quadratic variation is the following. Divide the interval [0, T ] into T/δt intervals of
size δt. If X has finite first variation, then on each subinterval (kδt, (k + 1)δt) the
increment of X should be of order δt. Thus adding T/δt terms of order δt will yield
something finite.

On the other hand if X has finite quadratic variation, on each subinterval
(kδt, (k + 1)δt) the increment of X should be of order

√
δt, so that adding T/δt

terms of the square of the increment yields something finite. Doing a quick check
for Brownian motion (which has finite quadratic variation), we see

E|W (t+ δt)−W (t)| =
√
δtE|N(0, 1)| ,

which is in line with our intuition.

Remark 3.7. If a continuous process has finite first variation, its quadratic
variation will necessarily be 0. On the other hand, if a continuous process has finite
(and non-zero) quadratic variation, its first variation will necessary be infinite.

4. Construction of the Itô integral

Let W be a standard Brownian motion, {Ft} be the Brownian filtration and D
be an adapted process. We think of D(t) to represent our position at time t on an
asset whose spot price is W (t).

Lemma 4.1. Let P = {0 = t0 < t1 < t2 < · · ·} be an increasing sequence of
times, and assume D is constant on [ti, ti+1) (i.e. the asset is only traded at times
t0, . . . , tn). Let IP (T ), defined by

IP (T ) =
n−1∑
i=0

D(ti)∆iW +D(tn)(W (T )−W (tn)) if T ∈ [tn, tn+1) .
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be your cumulative winnings up to time T . As before ∆iW
def= W (ti+1) −W (ti).

Then,

(4.1) EIP (T )2 = E
[ n∑
i=0

D(ti)2(ti+1 − ti) +D(tn)2(T − tn)
]

if T ∈ [tn, tn+1) .

Moreover, IP is a martingale and

(4.2) [IP , IP ](T ) =
n−1∑
i=0

D(ti)2(ti+1 − ti) +D(tn)2(T − tn) if T ∈ [tn, tn+1) .

This lemma, as we will shortly see, is the key to the construction of stochastic
integrals (called Itô integrals).

Proof. We first prove (4.1) with T = tn for simplicity. Note

(4.3) EIP (tn)2 =
n−1∑
i=0

ED(ti)2(∆iW )2 + 2
n−1∑
j=0

j−1∑
i=0

ED(ti)D(tj)(∆iW )(∆jW )

By the tower property

ED(ti)2(∆iW )2 = EE
(
D(ti)2(∆iW )2 ∣∣ Fti)

= ED(ti)2E
(
(W (ti+1)−W (ti))2 ∣∣ Fti) = ED(ti)2(ti+1 − ti) .

Similarly we compute

ED(ti)D(tj)(∆iW )(∆jW ) = EE
(
D(ti)D(tj)(∆iW )(∆jW )

∣∣ Ftj)
= ED(ti)D(tj)(∆iW )E

(
(W (tj+1)−W (tj))

∣∣ Ftj) = 0 .

Substituting these in (4.3) immediately yields (4.1) for tn = T .
The proof that IP is an martingale uses the same “tower property” idea, and

is left to the reader to check. The proof of (4.2) is also similar in spirit, but has
a few more details to check. The main idea is to let A(t) be the right hand side
of (4.2). Observe A is clearly a continuous, increasing, adapted process. Thus, if we
show M2 −A is a martingale, then using Theorem 3.5 we will have A = [M,M ] as
desired. The proof that M2 −A is an martingale uses the same “tower property”
idea, but is a little more technical and is left to the reader. �

Note that as ‖P‖ → 0, the right hand side of (4.2) converges to the standard
Riemann integral

∫ T
0 D(t)2 dt. Itô realised he could use this to prove that IP itself

converges, and the limit is now called the Itô integral.

Theorem 4.2. If
∫ T

0 D(t)2 dt <∞ almost surely, then as ‖P‖ → 0, the processes
IP converge to a continuous process I denoted by

(4.4) I(T ) def= lim
‖P‖→0

IP (T ) def=
∫ T

0
D(t) dW (t) .

This is known as the Itô integral of D with respect to W . If further

(4.5) E

∫ T

0
D(t)2 dt <∞ ,
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then the process I(T ) is a martingale and the quadratic variation [I, I] satisfies

[I, I](T ) =
∫ T

0
D(t)2 dt almost surely.

Remark 4.3. For the above to work, it is crucial that D is adapted, and
is sampled at the left endpoint of the time intervals. That is, the terms in the
sum are D(ti)(W (ti+1)−W (ti)), and not D(ti+1)(W (ti+1)−W (ti)) or 1

2 (D(ti) +
D(ti+1))(W (ti+1)−W (ti)), or something else.

Usually if the process is not adapted, there is no meaningful way to make sense
of the limit. However, if you sample at different points, it still works out (usually)
but what you get is different from the Itô integral (one example is the Stratonovich
integral).

Remark 4.4. The variable t used in (4.4) is a “dummy” integration variable.
Namely one can write∫ T

0
D(t) dW (t) =

∫ T

0
D(s) dW (s) =

∫ T

0
D(r) dW (r) ,

or any other variable of your choice.

Corollary 4.5 (Itô Isometry). If (4.5) holds then

E
(∫ T

0
D(t) dW (t)

)2
= E

∫ T

0
D(t)2 dt .

Proposition 4.6 (Linearity). If D1 and D2 are two adapted processes, and
α ∈ R, then∫ T

0
(D1(t) + αD2(t)) dW (t) =

∫ T

0
D1(t) dW (t) + α

∫ T

0
D2(t) dW (t) .

Remark 4.7. Positivity, however, is not preserved by Itô integrals. Namely
if D1 6 D2, there is no reason to expect

∫ T
0 D1(t) dW (t) 6

∫ T
0 D2(t) dW (t).

Indeed choosing D1 = 0 and D2 = 1 we see that we can not possibly have
0 =

∫ T
0 D1(t) dW (t) to be almost surely smaller than W (T ) =

∫ T
0 D2(t) dW (t).

Recall, our starting point in these notes was modelling stock prices as geometric
Brownian motions, given by the equation

dS(t) = αS(t) dt+ σS(t) dW (t) .

After constructing Itô integrals, we are now in a position to describe what this
means. The above is simply shorthand for saying S is a process that satisfies

S(T )− S(0) =
∫ T

0
αS(t) dt+

∫ T

0
σS(t) dW (t) .

The first integral on the right is a standard Riemann integral. The second integral,
representing the noisy fluctuations, is the Itô integral we just constructed.

Note that the above is a little more complicated than the Itô integrals we will
study first, since the process S (that we’re trying to define) also appears as an
integrand on the right hand side. In general, such equations are called Stochastic
differential equations, and are extremely useful in many contexts.
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5. The Itô formula

Using the abstract “limit” definition of the Itô integral, it is hard to compute
examples. For instance, what is ∫ T

0
W (s) dW (s) ?

This, as we will shortly, can be computed easily using the Itô formula (also called
the Itô-Doeblin formula).

Suppose b and σ are adapted processes. (In particular, they could but need not,
be random). Consider a process X defined by

(5.1) X(T ) = X(0) +
∫ T

0
b(t) dt+

∫ T

0
σ(t) dW (t) .

Note the first integral
∫ T

0 b(t) dt is a regular Riemann integral that can be done
directly. The second integral the Itô integral we constructed in the previous section.

Definition 5.1. The process X is called an Itô process if X(0) is deterministic
(not random) and for all T > 0,

(5.2) E

∫ T

0
σ(t)2 dt <∞ and

∫ T

0
b(t) dt <∞ .

Remark 5.2. The shorthand notation for (5.1) is to write
dX(t) = b(t) dt+ σ(t) dW (t) .(5.1′)

Proposition 5.3. The quadratic variation of X is

(5.3) [X,X](T ) =
∫ T

0
σ(t)2 dt almost surely.

Proof. Define B and M by

B(T ) =
∫ T

0
b(t) dt and M(T ) =

∫ T

0
σ(t) dW (t) ,

and let P = {0 = t0 < t1 < · · · < tn = T} be a partition of [0, T ], and ‖P‖ =
maxi ti+1 − ti. Observe

n−1∑
i=0

(∆iX)2 =
n−1∑
i=0

(∆iM)2 +
n−1∑
i=0

(∆iB)2 + 2
n−1∑
i=0

(∆iB)(∆iM) .

The first sum on the right converges (as ‖P‖ → 0) to [M,M ](T ), which we know is
exactly

∫ T
0 σ(t)2 dt. For the second sum, observe

(∆iB)2 =
(∫ ti+1

ti

b(s) ds
)2
6
(
max|b|2

)
(ti+1 − ti)2 6

(
max|b|2

)
‖P‖(ti+1 − ti) .

Hence ∣∣∣n−1∑
i=0

(∆iB)2
∣∣∣ 6 ‖P‖(max|b|2

)
T
‖P‖→0−−−−−→ 0 .

For the third term, one uses the Cauchy-Schwartz inequality to observe∣∣∣n−1∑
i=0

(∆iB)(∆iM)
∣∣∣ 6 (n−1∑

i=0
(∆iB)2

)1/2(n−1∑
i=0

(∆iM)2
)1/2 ‖P‖→0−−−−−→ 0 · [M,M ](T ) = 0 .
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�

Remark 5.4. It’s common to decompose X = B +M where M is a martingale
and B has finite first variation. Processes that can be decomposed in this form are
called semi-martingales, and the decomposition is unique. The process M is called
the martingale part of X, and B is called the bounded variation part of X.

Proposition 5.5. The semi-martingale decomposition of X is unique. That
is, if X = B1 +M1 = B2 +M2 where B1, B2 are continuous adapted processes with
finite first variation, and M1,M2 are continuous (square integrable) martingales,
then B1 = B2 and M1 = M2.

Proof. Set M = M1 − M2 and B = B1 − B2, and note that M = −B.
Consequently, M has finite first variation and hence 0 quadratic variation. This
implies EM(t)2 = E[M,M ](t) = 0 and hence M = 0 identically, which in turn
implies B = 0, B1 = B2 and M1 = M2. �

As an immediate consequence, we see that the sum of an Itô integral and
Riemann integral is a martingale, if and only if the Riemann integral is identically 0.

Proposition 5.6. Suppose b, σ are two adapted processes satisfying (5.2), and
let X be as in equation (5.1). Then X is a martingale if and only if b is identically 0.

Proof 1. If b is identically 0, then we already know that X is a martingale.
To prove the converse, suppose X is a martingale. Then the process B(T ) =∫ T

0 b(t) dt = X(T )−X(0)−
∫ T

0 σ(s) ds is the difference of two martingales, and so
must itself be a martingale. Now the Itô decomposition of the process B can be
expressed in two different ways: First B = B + 0, where B has bounded variation,
and 0 is a martingale. Second B = 0 +B, where 0 has bounded variation, and B is
a martingale. By Proposition 5.5, the bounded variation parts and martingale parts
must be equal, showing B = 0 identically. �

Proof 2. Here’s an alternate, direct proof of Proposition 5.6 without relying
on Proposition 5.5. Suppose X is a martingale. Then as above, the process B(T ) =∫ T

0 b(t) dt must also be a martingale, and so we must have E(B(T +h) |FT ) = B(T )
for every h > 0. Thus∫ T

0
b(t) dt = B(T ) = E(B(T + h) | FT ) = E

(∫ T+h

0
b(t) dt

∣∣∣ FT)
=
∫ T

0
b(t) dt+ E

(∫ T+h

T

b(t) dt
∣∣∣ FT) .

This implies

E
(∫ T+h

T

b(t) dt
∣∣∣ FT) = 0 ,

for every h > 0. Dividing both sides by h, and taking the limit as h→ 0 shows

0 = lim
h→0

E
( 1
h

∫ T+h

T

b(t) dt
∣∣∣ FT) = E

(
lim
h→0

1
h

∫ T+h

T

b(t) dt
∣∣∣ FT)

= E
(
b(T )

∣∣∣ FT) = b(T ) .

Thus b(T ) = 0 for every T > 0. This forces the process B to be identically 0,
concluding the proof. �
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Given an adapted process D, interpret X as the price of an asset, and D as
our position on it. (We could either be long, or short on the asset so D could be
positive or negative.)

Definition 5.7. We define the integral of D with respect to X by∫ T

0
D(t) dX(t) def=

∫ T

0
D(t)b(t) dt+

∫ T

0
D(t)σ(t) dW (t) .

As before,
∫ T

0 DdX represents the winnings or profit obtained using the trading
strategy D.

Remark 5.8. Note that the first integral on the right
∫ T

0 D(t)b(t) dt is a regular
Riemann integral, and the second one is an Itô integral. Recall that Itô integrals
with respect to Brownian motion (i.e. integrals of the form

∫ t
0 D(s) dW (s) are

martingales). Integrals with respect to a general process X are only guaranteed to
be martingales if X itself is a martingale (i.e. b = 0), or if the integrand is 0.

Remark 5.9. If we define IP by

IP (T ) =
n−1∑
i=0

D(ti)(∆iX) +D(tn)(X(T )−X(tn)) if T ∈ [tn, tn+1) ,

then IP converges to the integral
∫ T

0 D(t) dX(t) defined above. This works in the
same way as Theorem 4.2.

Suppose now f(t, x) is some function. If X is differentiable as a function of t
(which it most certainly is not), then the chain rule gives

f(T,X(T ))− f(0, X(0)) =
∫ T

0
∂t

(
f(t,X(t))

)
dt

=
∫ T

0
∂tf(t,X(t)) dt+

∫ T

0
∂xf(t,X(t)) ∂tX(t) dt

=
∫ T

0
∂tf(t,X(t)) dt+

∫ T

0
∂xf(t,X(t)) dX(t) .

Itô process are almost never differentiable as a function of time, and so the above
has no chance of working. It turns out, however, that for Itô process you can make
the above work by adding an Itô correction term. This is the celebrated Itô formula
(more correctly the Itô-Doeblin1 formula).

Theorem 5.10 (Itô formula, aka Itô-Doeblin formula). If f = f(t, x) is C1,2

function2 then

1W. Doeblin was a French-German mathematician who was drafted for military service during
the second world war. During the war he wrote down his mathematical work and sent it in a
sealed envelope to the French Academy of Sciences, because he did not want it to “fall into the
wrong hands”. When he was about to be captured by the Germans he burnt his mathematical
notes and killed himself.

The sealed envelope was opened in 2000 which revealed that he had a treatment of stochastic
Calculus that was essentially equivalent to Itô’s. In posthumous recognition, Itô’s formula is now
referred to as the Itô-Doeblin formula by many authors.

2Recall a function f = f(t, x) is said to be C1,2 if it is C1 in t (i.e. differentiable with respect
to t and ∂tf is continuous), and C2 in x (i.e. twice differentiable with respect to x and ∂xf , ∂2

xf
are both continuous).
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(5.4) f(T,X(T ))− f(0, X(0)) =
∫ T

0
∂tf(t,X(t)) dt+

∫ T

0
∂xf(t,X(t)) dX(t)

+ 1
2

∫ T

0
∂2
xf(t,X(t) d[X,X](t) .

Remark 5.11. To clarify notation, ∂tf(t,X(t)) means the following: differ-
entiate f(t, x) with respect to t (treating x as a constant), and then substitute
x = X(t). Similarly ∂xf(t,X(t)) means differentiate f(t, x) with respect to x, and
then substitute x = X(t). Finally ∂2

xf(t,X(t)) means take the second derivative of
the function f(t, x) with respect to x, and the substitute x = X(t).

Remark 5.12. In short hand differential form, this is written as

(5.4′) df(t,X(t)) = ∂tf(t,X(t)) dt+ ∂xf(t,X(t)) dX(t)

+ 1
2∂

2
xf(t,X(t)) d[X,X](t) .

The term 1
2∂

2
xf d[X,X](t) is an “extra” term, and is often referred to as the Itô

correction term. The Itô formula is simply a version of the chain rule for stochastic
processes.

Remark 5.13. Substituting what we know about X from (5.1) and (5.3) we
see that (5.4) becomes

f(T,X(T ))− f(0, X(0)) =
∫ T

0

(
∂tf(t,X(t)) + ∂xf(t,X(t))b(t)

)
dt

+
∫ T

0
∂xf(t,X(t))σ(t) dW (t) + 1

2

∫ T

0
∂2
xf(t,X(t))σ(t)2 dt .

The second integral on the right is an Itô integral (and hence a martingale). The
other integrals are regular Riemann integrals which yield processes of finite variation.

While a complete rigorous proof of the Itô formula is technical, and beyond the
scope of this course, we provide a quick heuristic argument that illustrates the main
idea clearly.

Intuition behind the Itô formula. Suppose that the function f is only a
function of x and doesn’t depend on t, and X is a standard Brownian motion (i.e.
b = 0 and σ = 1). In this case proving Itô’s formula reduces to proving

f(W (T ))− f(W (0)) =
∫ T

0
f ′(W (t)) dW (t) + 1

2

∫ T

0
f ′′(W (t)) dt .

Let P = {0 = t0 < t1 < · · · < tn = T} be a partition of [0, T ]. Taylor expanding
f to second order gives

(5.5) f(W (T ))− f(W (0)) =
n−1∑
i=0

f(W (ti+1))− f(W (ti))

=
n−1∑
i=0

f ′(W (ti))(∆iW ) + 1
2

n−1∑
i=0

f ′′(W (ti))(∆iW )2 + 1
2

n−1∑
i=0

o
(
(∆iW )2) ,

where the last sum on the right is the remainder from the Taylor expansion.
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Note the first sum on the right of (5.5) converges to the Itô integral∫ T

0
f ′(W (t)) dW (t) .

For the second sum on the right of (5.5), note

f ′′(W (ti))(∆iW )2 = f ′′(W (ti))(ti+1 − ti) + f ′′(W (ti))
[
(∆iW )2 − (ti+1 − ti)

]
.

After summing over i, first term on the right converges to the Riemann integral∫ T
0 f ′′(W (t)) dt. The second term on the right is similar to what we had when
computing the quadratic variation of W . The variance of ξi

def= (∆iW )2 − (ti+1 − ti)
is of order (ti+1 − ti)2. Thus we expect that the second term above, when summed
over i, converges to 0.

Finally each summand in the remainder term (the last term on the right of (5.5))
is smaller than (∆iW )2. (If, for instance, f is three times continuously differentiable
in x, then each summand in the remainder term is of order (∆iW )3.) Consequently,
when summed over i this should converge to 0 �

6. A few examples using Itô’s formula

Technically, as soon as you know Itô’s formula you can “jump right in” and
derive the Black-Scholes equation. However, because of the importance of Itô’s
formula, we work out a few simpler examples first.

Example 6.1. Compute the quadratic variation of W (t)2.

Solution. Let f(t, x) = x2. Then, by Itô’s formula,

d
(
W (t)2) = df(t,W (t))

= ∂tf(t,W (t)) dt+ ∂xf(t,W (t)) dW (t) + 1
2∂

2
xf(t,W (t)) dt

= 2W (t) dW (t) + dt .

Or, in integral form,

W (T )2 −W (0)2 = W (T )2 = 2
∫ T

0
W (t) dW (t) + T .

Now the second term on the right has finite first variation, and won’t affect our
computations for quadratic variation. The first term is an martingale whose quadratic
variation is

∫ T
0 W (t)2 dt, and so

[W 2,W 2](T ) = 4
∫ T

0
W (t)2 dt . �

Remark 6.2. Note the above also tells you

2
∫ T

0
W (t) dW (t) = W (T )2 − T .

Example 6.3. Let M(t) = W (t) and N(t) = W (t)2 − t. We know M and N
are martingales. Is MN a martingale?
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Solution. Note M(t)N(t) = W (t)3 − tW (t). By Itô’s formula,

d(MN) = −W (t) dt+ (3W (t)2 − t) dW (t) + 3W (t) dt .

Or in integral form

M(t)N(t) =
∫ t

0
2W (s) ds+

∫ t

0
(3W (s)2 − s) dW (s) .

Now the second integral on the right is a martingale, but the first integral most
certainly is not. So MN can not be a martingale. �

Remark 6.4. Note, above we changed the integration variable from t to s. This
is perfectly legal – the variable with which you integrate with respect to is a dummy
variable (just line regular Riemann integrals) and you can replace it what your
favourite (unused!) symbol.

Remark 6.5. It’s worth pointing out that the Itô integral
∫ t

0 ∆(s) dW (s) is
always a martingale (under the finiteness condition (4.5)). However, the Riemann
integral

∫ t
0 b(s) ds is only a martingale if b = 0 identically.

Proposition 6.6. If f = f(t, x) is C1,2
b then the process

M(t) def= f(t,W (t))−
∫ t

0

(
∂tf(s,W (s)) + 1

2∂
2
xf(s,W (s))

)
ds

is a martingale.

Remark 6.7. We’d seen this earlier, and the proof involved computing the
conditional expectations directly and checking an algebraic identity involving the
density of the normal distribution. With Itô’s formula, the proof is “immediate”.

Proof. By Itô’s formula (in integral form)

f(t,W (t))− f(0,W (0))

=
∫ t

0
∂tf(s,W (s)) ds+

∫ t

0
∂xf(s,W (s)) dW (s) + 1

2

∫ t

0
∂2
xf(s,W (s)) ds

=
∫ t

0

(
∂tf(s,W (s)) + 1

2∂
2
xf(s,W (s))

)
ds+

∫ t

0
∂xf(s,W (s)) dW (s) .

Substituting this we see

M(t) = f(0,W (0)) +
∫ t

0
∂xf(s,W (s)) dW (s) ,

which is a martingale. �

Remark 6.8. Note we said f ∈ C1,2
b to “cover our bases”. Recall for Itô integrals

to be martingales, we need the finiteness condition (4.5) to hold. This will certainly
be the case if ∂xf is bounded, which is why we made this assumption. The result
above is of course true under much more general assumptions.

Example 6.9. Let X(t) = t sin(W (t)). Is X2 − [X,X] a martingale?
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Solution. Let f(t, x) = t sin(x). Observe X(t) = f(t,W (t)), ∂tf = sin x,
∂xf = t cosx, and ∂2

xf = −t sin x. Thus by Itô’s formula,

dX(t) = ∂tf(t,W (t)) dt+ ∂xf(t,W (t)) dW (t) + 1
2∂

2
xf(t,W (t)) d[W,W ](t)

= sin(W (t)) dt+ t cos(W (t)) dW (t)− 1
2 t sin(W (t)) dt ,

and so
d[X,X](t) = t2 cos2(W (t)) dt .

Now let g(x) = x2 and apply Itô’s formula to compute dg(X(t)). This gives

dX(t)2 = 2X(t) dX(t) + d[X,X](t)

and so

d(X(t)2 − [X,X]) = 2X(t) dX(t)

= 2t sin(t)
(
sin(W (t))− t sin(W (t))

2
)
dt+ 2t sin(t)

(
t cos(W (t))

)
dW (t) .

Since the dt term above isn’t 0, X(t)2 − [X,X] can not be a martingale. �

Recall we said earlier (Theorem 3.4) that for any martingale M , M2 − [M,M ]
is a martingale. In the above example X is not a martingale, and so there is
no contradiction when we show that X2 − [X,X] is not a martingale. If M is a
martingale, Itô’s formula can be used to “prove”3 that M2− [M,M ] is a martingale.

Proposition 6.10. Let M(t) =
∫ t

0 σ(s) dW (s). Then M2 − [M,M ] is a mar-
tingale.

Proof. Let N(t) = M(t)2 − [M,M ](t). Observe that by Itô’s formula,

d(M(t)2) = 2M(t) dM(t) + d[M,M ](t) .

Hence

dN = 2M(t) dM(t) + d[M,M ](t)− d[M,M ](t) = 2M(t)σ(t) dW (t) .

Since there is no “dt” term and Itô integrals are martingales, N is a martingale. �

7. Review Problems

Problem 7.1. If 0 6 r < s < t, compute E
(
W (r)W (s)W (t)

)
.

Problem 7.2. Define the processes X,Y, Z by

X(t) =
∫ W (t)

0
e−s

2
ds , Y (t) = exp

(∫ t

0
W (s) ds

)
, Z(t) = tX(t)2

Decompose each of these processes as the sum of a martingale and a process of finite
first variation. What is the quadratic variation of each of these processes?

3We used the fact that M2 − [M,M ] is a martingale crucially in the construction of Itô
integrals, and hence in proving Itô’s formula. Thus proving M2 − [M,M ] is a martingale using the
Itô’s formula is circular and not a valid proof. It is however instructive, and helps with building
intuition, which is why it is presented here.
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Problem 7.3. Define the processes X,Y by

X(t) def=
∫ t

0
W (s) ds , Y (t) def=

∫ t

0
W (s) dW (s) .

Given 0 6 s < t, compute the conditional expectations E(X(t)|Fs), and E(Y (t)|Fs).

Problem 7.4. Let M(t) =
∫ t

0
W (s) dW (s). Find a function f such that

E(t) def= exp
(
M(t)−

∫ t

0
f(s,W (s)) ds

)
is a martingale.

Problem 7.5. Suppose σ = σ(t) is a deterministic (i.e. non-random) process,
and X is the Itô process defined by

X(t) =
∫ t

0
σ(u) dW (u) .

(a) Given λ, s, t ∈ R with 0 6 s < t compute E(eλ(X(t)−X(s)) | Fs).
(b) If r 6 s compute E exp(λX(r) + µ(X(t)−X(s))).
(c) What is the joint distribution of (X(r), X(t)−X(s))?
(d) (Lévy’s criterion) If σ(u) = ±1 for all u, then show that X is a standard

Brownian motion.
Problem 7.6. Define the process X,Y by

X =
∫ t

0
s dW (s) , Y =

∫ t

0
W (s) ds .

Find a formula for EX(t)n and EY (t)n for any n ∈ N.

Problem 7.7. Let M(t) =
∫ t

0
W (s) dW (s). For s < t, is M(t) −M(s) inde-

pendent of Fs? Justify.
Problem 7.8. Determine whether the following identities are true or false, and

justify your answer.

(a) e2t sin(2W (t)) = 2
∫ t

0
e2s cos(2W (s)) dW (s).

(b) |W (t)| =
∫ t

0
sign(W (s)) dW (s). (Recall sign(x) = 1 if x > 0, sign(x) = −1

if x < 0 and sign(x) = 0 if x = 0.)

8. The Black Scholes Merton equation.

The price of an asset with a constant rate of return α is given by
dS(t) = αS(t) dt .

To account for noisy fluctuations we model stock prices by adding the term
σS(t) dW (t) to the above:
(8.1) dS(t) = αS(t) dt+ σS(t)dW (t) .
The parameter α is called the mean return rate or the percentage drift, and the
parameter σ is called the volatility or the percentage volatility.
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Definition 8.1. A stochastic process S satisfying (8.1) above is called a
geometric Brownian motion.

The reason S is called a geometric Brownian motion is as follows. Set Y = lnS
and observe

dY (t) = 1
S(t) dS(t)− 1

2S(t)2 d[S, S](t) =
(
α− σ2

2

)
dt+ σ dW (t) .

If α = σ2/2 then Y = lnS is simply a Brownian motion.
We remark, however, that our application of Itô’s formula above is not completely

justified. Indeed, the function f(x) = ln x is not differentiable at x = 0, and Itô’s
formula requires f to be at least C2. The reason the application of Itô’s formula
here is valid is because the process S never hits the point x = 0, and at all other
points the function f is infinitely differentiable.

The above also gives us an explicit formula for S. Indeed,

ln
( S(t)
S(0)

)
=
(
α− σ2

2

)
t+ σW (t) ,

and so

(8.2) S(t) = S(0) exp
((
α− σ2

2

)
t+ σW (t)

)
.

Now consider a European call option with strike price K and maturity time T .
This is a security that allows you the option (not obligation) to buy S at price K
and time T . Clearly the price of this option at time T is (S(T )−K)+. Our aim is
to compute the arbitrage free4 price of such an option at time t < T .

Black and Scholes realised that the price of this option at time t should only
depend on the asset price S(t), and the current time t (or more precisely, the time
to maturity T − t), and of course the model parameters α, σ. In particular, the
option price does not depend on the price history of S.

Theorem 8.2. Suppose we have an arbitrage free financial market consisting of
a money market account with constant return rate r, and a risky asset whose price
is given by S. Consider a European call option with strike price K and maturity T .

(1) If c = c(t, x) is a function such that at any time t 6 T , the arbitrage free
price of this option is c(t, S(t)), then c satisfies

∂tc+ rx∂xc+ σ2x2

2 ∂2
xc− rc = 0 x > 0, t < T ,(8.3)

c(t, 0) = 0 t 6 T ,(8.4)
c(T, x) = (x−K)+ x > 0 .(8.5)

(2) Conversely, if c satisfies (8.3)–(8.5) then c(t, S(t)) is the arbitrage free
price of this option at any time t 6 T .

Remark 8.3. Since α, σ and T are fixed, we suppress the explicit dependence
of c on these quantities.

4In an arbitrage free market, we say p is the arbitrage free price of a non traded security if
given the opportunity to trade the security at price p, the market is still arbitrage free. (Recall a
financial market is said to be arbitrage free if there doesn’t exist a self-financing portfolio X with
X(0) = 0 such that at some t > 0 we have X(t) > 0 and P (X(t) > 0) > 0.)
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Remark 8.4. The above result assumes the following:
(1) The market is frictionless (i.e. there are no transaction costs).
(2) The asset is liquid and fractional quantities of it can be traded.
(3) The borrowing and lending rate are both r.

Remark 8.5. Even though the asset price S(t) is random, the function c is a
deterministic (non-random) function. The option price, however, is c(t, S(t)), which
is certainly random.

Remark 8.6. Equation (8.3)–(8.5) are the Black Scholes Merton PDE. This is
a partial differential equation, which is a differential equation involving derivatives
with respect to more than one variable. Equation (8.3) governs the evolution of c
for x ∈ (0,∞) and t < T . Equation (8.5) specifies the terminal condition at t = T ,
and equation (8.4) specifies a boundary condition at x = 0.

To be completely correct, one also needs to add a boundary condition as x→∞
to the system (8.3)–(8.5). When x is very large, the call option is deep in the money,
and will very likely end in the money. In this case the replicating portfolio should
be long one share of the asset and short e−r(T−t)K, the discounted strike price, in
cash. This means that when x is very large, c(x, t) ≈ x−Ke−r(T−t), and hence a
boundary condition at x =∞ can be obtained by supplementing (8.4) with

lim
x→∞

(
c(t, x)− (x−Ke−r(T−t))

)
= 0 .(8.4′)

Remark 8.7. The system (8.3)–(8.5) can be solved explicitly using standard
calculus by substituting y = ln x and converting it into the heat equation, for which
the solution is explicitly known. This gives the Black-Scholes-Merton formula
(8.6) c(t, x) = xN(d+(T − t, x))−Ke−r(T−t)N(d−(T − t, x))
where

(8.7) d±(τ, x) def= 1
σ
√
τ

(
ln
( x
K

)
+
(
r ± σ2

2

)
τ
)
,

and

(8.8) N(x) def= 1√
2π

∫ x

−∞
e−y

2/2 dy ,

is the CDF of a standard normal variable.
Even if you’re unfamiliar with the techniques involved in arriving at the solution

above, you can certainly check that the function c given by (8.6)–(8.7) above
satisfies (8.3)–(8.5). Indeed, this is a direct calculation that only involves patience
and a careful application of the chain rule. We will, however, derive (8.6)–(8.7) later
using risk neutral measures.

We will prove Theorem 8.2 by using a replicating portfolio. This is a portfolio
(consisting of cash and the risky asset) that has exactly the same cash flow at
maturity as the European call option that needs to be priced. Specifically, let X(t)
be the value of the replicating portfolio and ∆(t) be the number of shares of the
asset held. The remaining X(t)− S(t)∆(t) will be invested in the money market
account with return rate r. (It is possible that ∆(t)S(t) > X(t), in which means we
borrow money from the money market account to invest in stock.) For a replicating
portfolio, the trading strategy ∆ should be chosen in a manner that ensures that
we have the same cash flow as the European call option. That is, we must have
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X(T ) = (S(T ) −K)+ = c(T, S(T )). Now the arbitrage free price is precisely the
value of this portfolio.

Remark 8.8. Through the course of the proof we will see that given the function
c, the number of shares of S the replicating portfolio should hold is given by the
delta hedging rule
(8.9) ∆(t) = ∂xc(t, S(t)) .

Remark 8.9. Note that there is no α dependence in the system (8.3)–(8.5),
and consequently the formula (8.6) does not depend on α. At first sight, this might
appear surprising. (In fact, Black and Scholes had a hard time getting the original
paper published because the community couldn’t believe that the final formula is
independent of α.) The fact that (8.6) is independent of α can be heuristically
explained by the fact that the replicating portfolio also holds the same asset: thus
a high mean return rate will help both an investor holding a call option and an
investor holding the replicating portfolio. (Of course this isn’t the entire story, as one
has to actually write down the dependence and check that an investor holding the
call option benefits exactly as much as an investor holding the replicating portfolio.
This is done below.)

Proof of Theorem 8.2 part 1. If c(t, S(t)) is the arbitrage free price, then,
by definition
(8.10) c(t, S(t)) = X(t) ,
where X(t) is the value of a replicating portfolio. Since our portfolio holds ∆(t)
shares of S and X(t)−∆(t)S(t) in a money market account, the evolution of the
value of this portfolio is given by

dX(t) = ∆(t) dS(t) + r
(
X(t)−∆(t)S(t)

)
dt

=
(
rX(t) + (α− r)∆(t)S(t)

)
dt+ σ∆(t)S(t) dW (t) .

Also, by Itô’s formula we compute

dc(t, S(t)) = ∂tc(t, S(t)) dt+ ∂xc(t, S(t)) dS(t) + 1
2∂

2
xc(t, S(t)) d[S, S](t) ,

=
(
∂tc+ αS∂xc+ 1

2σ
2S2∂2

xc
)
dt+ ∂xc σS dW (t)

where we suppressed the (t, S(t)) argument in the last line above for convenience.
Equating dc(t, S(t)) = dX(t) gives(
rX(t) + (α− r)∆(t)S(t)

)
dt+ σ∆(t)S(t) dW (t)

=
(
∂tc+ αS∂xc+ 1

2σ
2S2∂2

xc
)
dt+ ∂xc σS dW (t) .

Using uniqueness of the semi-martingale decomposition (Proposition 5.5) we can
equate the dW and the dt terms respectively. Equating the dW terms gives the
delta hedging rule (8.9). Writing S(t) = x for convenience, equating the dt terms
and using (8.10) gives (8.3). Since the payout of the option is (S(T ) − K)+ at
maturity, equation (8.5) is clearly satisfied.

Finally if S(t0) = 0 at one particular time, then we must have S(t) = 0 at all
times, otherwise we would have an arbitrage opportunity. (This can be checked
directly from the formula (8.2) of course.) Consequently the arbitrage free price of
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the option when S = 0 is 0, giving the boundary condition (8.4). Hence (8.3)–(8.5)
are all satisfied, finishing the proof. �

Proof of Theorem 8.2 part 2. For the converse, we suppose c satisfies the
system (8.3)–(8.5). Choose ∆(t) by the delta hedging rule (8.9), and let X be a
portfolio with initial value X(0) = c(0, S(0)) that holds ∆(t) shares of the asset at
time t and the remaining X(t)−∆(t)S(t) in cash. We claim that X is a replicating
portfolio (i.e. X(T ) = (S(T ) − K)+ almost surely) and X(t) = c(t, S(t)) for all
t 6 T . Once this is established c(t, S(t)) is the arbitrage free price as desired.

To show X is a replicating portfolio, first claim that X(t) = c(t, S(t)) for all
t < T . To see this, let Y (t) = e−rtX(t) be the discounted value of X. (That is, Y (t)
is the value of X(t) converted to cash at time t = 0.) By Itô’s formula, we compute

dY (t) = −rY (t) dt+ e−rtdX(t)
= e−rt(α− r)∆(t)S(t) dt+ e−rtσ∆(t)S(t) dW (t) .

Similarly, using Itô’s formula, we compute

d
(
e−rtc(t, S(t))

)
= e−rt

(
−rc+ ∂tc+ αS∂xc+ 1

2σ
2S2∂2

xc
)
dt+ e−rt∂xc σS dW (t) .

Using (8.3) this gives

d
(
e−rtc(t, S(t))

)
= e−rt(α− r)S∂xc dt+ e−rt∂xc σS dW (t) = dY (t) ,

since ∆(t) = ∂xc(t, S(t)) by choice. This forces

e−rtX(t) = X(0) +
∫ t

0
dY (s) = X(0) +

∫ t

0
d
(
e−rsc(s, S(s))

)
= X(0) + e−rtc(t, S(t))− c(0, S(0)) = e−rtc(t, S(t)) ,

since we chose X(0) = c(0, S(0)). This forces X(t) = c(t, S(t)) for all t < T ,
and by continuity also for t = T . Since c(T, S(T )) = (S(T ) − K)+ we have
X(T ) = (S(T )−K)+ showing X is a replicating portfolio, concluding the proof. �

Remark 8.10. In order for the application of Itô’s formula to be valid above,
we need c ∈ C1,2. This is certainly false at time T , since c(T, x) = (x−K)+ which
is not even differentiable, let alone twice continuously differentiable. However, if c
satisfies the system (8.3)–(8.5), then it turns out that for every t < T the function
c will be infinitely differentiable with respect to x. This is why our proof first shows
that c(t, S(t)) = X(t) for t < T and not directly that c(t, S(t)) = X(t) for all t 6 T .

Remark 8.11 (Put Call Parity). The same argument can be used to compute
the arbitrage free price of European put options (i.e. the option to sell at the strike
price, instead of buying). However, once the price of the price of a call option is
computed, the put call parity can be used to compute the price of a put.

Explicitly let p = p(t, x) be a function such that at any time t 6 T , p(t, S(t)) is
the arbitrage free price of a European put option with strike price K. Consider a
portfolio X that is long a call and short a put (i.e. buy one call, and sell one put).
The value of this portfolio at time t < T is

X(t) = c(t, S(t))− p(t, S(t))
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and at maturity we have5

X(T ) = (S(T )−K)+ − (K − S(T ))+ = S(T )−K .

This payoff can be replicated using a portfolio that holds one share of the asset and
borrows Ke−rT in cash (with return rate r) at time 0. Thus, in an arbitrage free
market, we should have

c(t, S(t))− p(t, S(t)) = X(t) = S(t)−Ke−r(T−t) .

Writing x for S(t) this gives the put call parity relation

c(t, x)− p(t, x) = x−Ke−r(T−t) .

Using this the price of a put can be computed from the price of a call.

We now turn to understanding properties of c. The partial derivatives of c with
respect to t and x measure the sensitivity of the option price to changes in the time
to maturity and spot price of the asset respectively. These are called “the Greeks”:

(1) The delta is defined to be ∂xc, and is given by

∂xc = N(d+) + xN ′(d+)d′+ −Ke−rτN ′(d−)d′− .

where τ = T − t is the time to maturity. Recall d± = d±(τ, x), and we suppressed
the (τ, x) argument above for notational convenience. Using the formulae (8.6)–(8.8)
one can verify

d′+ = d′− = 1
xσ
√
τ

and xN ′(d+) = Ke−rτN ′(d−) ,

and hence the delta is given by

∂xc = N(d+) .

Recall that the delta hedging rule (equation (8.9)) explicitly tells you that the
replicating portfolio should hold precisely ∂xc(t, S(t)) shares of the risky asset and
the remainder in cash.

(2) The gamma is defined to be ∂2
xc, and is given by

∂2
xc = N ′(d+)d′+ = 1

xσ
√

2πτ
exp
(−d2

+
2

)
.

(3) Finally the theta is defined to be ∂tc, and simplifies to

∂tc = −rKe−rτN(d−)− σx

2
√
τ
N ′(d+)

Proposition 8.12. The function c(t, x) is convex and increasing as a function
of x, and is decreasing as a function of t.

Proof. This follows immediately from the fact that ∂xc > 0, ∂2
xc > 0 and

∂tc < 0. �

5A forward contract requires the holder to buy the asset at price K at maturity. The value of
this contract at maturity is exactly S(T )−K, and so a portfolio that is long a call and short a
put has exactly the same cash flow as a forward contract.
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Remark 8.13 (Hedging a short call). Suppose you sell a call option valued at
c(t, x), and want to create a replicating portfolio. The delta hedging rule calls for
x∂xc(t, x) of the portfolio to be invested in the asset, and the rest in the money
market account. Consequently the value of your money market account is

c(t, x)− x∂xc = xN(d+)−Ke−rτN(d−)− xN(d+) = −Ke−rτN(d−) < 0 .

Thus to properly hedge a short call you will have to borrow from the money market
account and invest it in the asset. As t→ T you will end up selling shares of the
asset if x < K, and buying shares of it if x > K, so that at maturity you will
hold the asset if x > K and not hold it if x < K. To hedge a long call you do the
opposite.

Remark 8.14 (Delta neutral and Long Gamma). Suppose at some time t the
price of a stock is x0. We short ∂xc(t, x0) shares of this stock buy the call option
valued at c(t, x0). We invest the balance M = x0∂xc(t, x0)− c(t, x0) in the money
market account. Now if the stock price changes to x, and we do not change our
position, then the value of our portfolio will be

c(t, x)− ∂xc(t, x0)x+M = c(t, x)− x∂xc(t, x0) + x0∂xc(t, x0)− c(t, x0)
= c(t, x)−

(
c(t, x0) + (x− x0)∂xc(t, x0)

)
.

Note that the line y = c(t, x0) + (x− x0)∂xc(t, x0) is the equation for the tangent to
the curve y = c(t, x) at the point (x0, c(t, x0)). For this reason the above portfolio
is called delta neutral.

Note that any convex function lies entirely above its tangent. Thus, under
instantaneous changes of the stock price (both rises and falls), we will have

c(t, x)− ∂xc(t, x0)x+M > 0 , both for x > x0 and x < x0.

For this reason the above portfolio is called long gamma.
Note, even though under instantaneous price changes the value of our portfolio

always rises, this is not an arbitrage opportunity. The reason for this is that as time
increases c decreases since ∂tc < 0. The above instantaneous argument assumed c is
constant in time, which it most certainly is not!

9. Multi-dimensional Itô calculus.

Finally we conclude this chapter by studying Itô calculus in higher dimensions.
Let X,Y be Itô process. We typically expect X,Y will have finite and non-zero
quadratic variation, and hence both the increments X(t+ δt)−X(t) and Y (t+ δt)−
Y (t) should typically be of size

√
δ. If we multiply these and sum over some finite

interval [0, T ], then we would have roughly T/δt terms each of size δt, and expect
that this converges as δt→ 0. The limit is called the joint quadratic variation.

Definition 9.1. Let X and Y be two Itô processes. We define the joint
quadratic variation of X,Y , denoted by [X,Y ] by

[X,Y ](T ) = lim
‖P‖→0

n−1∑
i=0

(X(ti+1)−X(ti))(Y (ti+1)− Y (ti)) ,

where P = {0 = t1 < t1 · · · < tn = T} is a partition of [0, T ].
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Using the identity
4ab = (a+ b)2 − (a− b)2

we quickly see that

(9.1) [X,Y ] = 1
4
(
[X + Y,X + Y ]− [X − Y,X − Y ]

)
.

Using this and the properties we already know about quadratic variation, we can
quickly deduce the following.

Proposition 9.2 (Product rule). If X and Y are two Itô processes then

(9.2) d(XY ) = X dY + Y dX + d[X,Y ] .

Proof. By Itô’s formula

d(X + Y )2 = 2(X + Y ) d(X + Y ) + d[X + Y,X + Y ]
= 2X dX + 2Y dY + 2X dY + 2Y dX + d[X + Y,X + Y ] .

Similarly

d(X − Y )2 = 2X dX + 2Y dY − 2X dY − 2Y dX + d[X − Y,X − Y ] .

Since
4 d(XY ) = d(X + Y )2 − d(X − Y )2 ,

we obtain (9.2) as desired. �

As with quadratic variation, processes of finite variation do not affect the joint
quadratic variation.

Proposition 9.3. If X is and Itô process, and B is a continuous adapted
process with finite variation, then [X,B] = 0.

Proof. Note [X ±B,X ±B] = [X,X] and hence [X,B] = 0. �

With this, we can state the higher dimensional Itô formula. Like the one
dimensional Itô formula, this is a generalization of the chain rule and has an extra
correction term that involves the joint quadratic variation.

Theorem 9.4 (Itô-Doeblin formula). Let X1, . . . , Xn be n Itô processes and
set X = (X1, . . . , Xn) . Let f : [0,∞) × Rn be C1 in the first variable, and C2 in
the remaining variables. Then

f(T,X(T )) = f(0, X(0)) +
∫ T

0
∂tf(t,X(t)) dt+

N∑
i=1

∫ T

0
∂if(t,X(t)) dXi(t)

+ 1
2

N∑
i,j=1

∫ T

0
∂i∂jf(t,X(t)) d[Xi, Xj ](t) ,

Remark 9.5. Here we think of f = f(t, x1, . . . , xn), often abbreviated as f(t, x).
The ∂if appearing in the Itô formula above is the partial derivative of f with respect
to xi. As before, the ∂tf and ∂if terms above are from the usual chain rule, and
the last term is the extra Itô correction.
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Remark 9.6. In differential form Itô’s formula says

d
(
f(t,X(t)

)
= ∂tf(t,X(t)) dt+

n∑
i=1

∂if(t,X(t)) dXi(t)

+ 1
2

n∑
i,j=1

∂i∂jf(t,X(t)) d[Xi, Xj ](t) .

For compactness, we will often omit the (t,X(t)) and write the above as

d
(
f(t,X(t)

)
= ∂tf dt+

n∑
i=1

∂if dXi(t) + 1
2

n∑
i,j=1

∂i∂jf d[Xi, Xj ](t) .

Remark 9.7. We will most often use this in two dimensions. In this case,
writing X and Y for the two processes, the Itô formula reduces to

d
(
f(t,X(t), Y (t))

)
= ∂tf dt+ ∂xf dX(t) + ∂yf dY (t)

+ 1
2
(
∂2
xf d[X,X](t) + 2∂x∂yf d[X,Y ](t) + ∂2

yf d[Y, Y ](t)
)
.

Intuition behind the Itô formula. Let’s assume we only have two Itô
processes X, Y and f = f(x, y) doesn’t depend on t. Let P = {0 = t0 < t1 · · · <
tm = T} be a partition of the interval [0, T ] and write

f(X(T ), Y (T ))− f(X(0), Y (0)) =
m−1∑
i=0

f(ξi+1)− f(ξi) ,

where we write ξi = (X(ti), Y (ti)) for compactness. Now by Taylor’s theorem,
f(ξi+1)− f(ξi) = ∂xf(ξi) ∆iX + ∂yf(ξi) ∆iY

+ 1
2

(
∂2
xf(ξi)(∆iX)2 + 2∂x∂yf(ξi) ∆iX ∆iY + ∂2

yf(ξi)(∆iY )2
)

+ higher order terms.

Here ∆iX = X(ti+1)−X(ti) and ∆iY = Y (ti+1)−Y (ti). Summing over i, the first
two terms converge to

∫ T
0 ∂xf(t) dX(t) and

∫ T
0 ∂yf(t) dY (t) respectively. The terms

involving (∆iX)2 should to
∫ T

0 ∂2
xf d[X,X] as we had with the one dimensional

Itô formula. Similarly, the terms involving (∆iY )2 should to
∫ T

0 ∂2
yf d[Y, Y ] as we

had with the one dimensional Itô formula. For the cross term, we can use the
identity (9.1) and quickly check that it converges to

∫ T
0 ∂x∂yf d[X,Y ]. The higher

order terms are typically of size (ti+1 − ti)3/2 and will vanish as ‖P‖ → 0. �

The most common use of the multi-dimensional Itô formula is when the Itô
processes are specified as a combination of Itô integrals with respect to different
Brownian motions. Thus our next goal is to find an effective way to to compute the
joint quadratic variations in this case.

We’ve seen earlier (Theorems 3.4–3.5) that the quadratic variation of a martin-
gale M is the unique increasing process that make M2 − [M,M ] a martingale. A
similar result holds for the joint quadratic variation.

Proposition 9.8. Suppose M,N are two continuous martingales with respect
to a common filtration {Ft} such that EM(t)2,EN(t)2 <∞.
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(1) The process MN − [M,N ] is also a martingale with respect to the same
filtration.

(2) Moreover, if A is any continuous adapted process with finite first variation
such that A(0) = 0 and MN −A is a martingale with respect to {Ft}, then
A = [M,N ].

Proof. The first part follows immediately from Theorem 3.4 and the fact that
4
(
MN − [M,N ]

)
= (M +N)2− [M +N,M +N ]−

(
(M −N)2− [M −N,M −N ]

)
.

The second part follows from the first part and uniqueness of the semi-martingale
decomposition (Proposition 5.5). �

Proposition 9.9 (Bi-linearity). If X,Y, Z are three Itô processes and α ∈ R is
a (non-random) constant, then
(9.3) [X,Y + αZ] = [X,Y ] + α[X,Z] .

Proof. Let L,M and N be the martingale part in the Itô decomposition of
X,Y and Z respectively. Clearly

L(M + αN)−
(
[L,M ] + α[L,N ]

)
=
(
LM − [L,M ]

)
+ α

(
LN − [L,N ]

)
,

which is a martingale. Thus, since [L,M ] + α[L,N ] is also continuous adapted and
increasing, by Proposition 9.8 we must have [L,M + αN ] = [L,M ] + α[L,N ]. Since
the joint quadratic variation of Itô processes can be computed in terms of their
martingale parts alone, we obtain (9.3) as desired. �

For integrals with respect to Itô processes, we can compute the joint quadratic
variation explicitly.

Proposition 9.10. Let X1, X2 be two Itô processes, σ1, σ2 be two adapted
processes and let Ij be the integral defined by Ij(t) =

∫ t
0 σj(s) dXj(s) for j ∈ {1, 2}.

Then
[I1, I2](t) =

∫ t

0
σ1(s)σ2(s) d[X1, X2](s) .

Proof. Let P be a partition and, as above, let ∆iX = X(ti+1)−X(ti) denote
the increment of a process X. Since

Ij(T ) = lim
‖P‖→0

n−1∑
i=0

σj(ti)∆iXj , and [X1, X2] = lim
‖P‖→0

n−1∑
i=0

∆iX1 ∆iX2 ,

we expect that σj(ti)∆i(Xj) is a good approximation for ∆iIj , and ∆iX1 ∆iX2 is a
good approximation for ∆i[X1, X2]. Consequently, we expect

[Ii, Ij ](T ) = lim
‖P‖→0

n−1∑
i=0

∆iI1 ∆iI2 = lim
‖P‖→0

n−1∑
i=0

σ1(ti)∆iX1 σ2(ti)∆iX2

= lim
‖P‖→0

n−1∑
i=0

σ1(ti)σ2(ti)∆i[X1, X2] =
∫ T

0
σ1(t)σ2(t) d[X1, X2](t) ,

as desired. �

Proposition 9.11. Let M,N be two continuous martingales with respect to
a common filtration {Ft} such that EM(t)2 < ∞ and EN(t)2 < ∞. If M,N are
independent, then [M,N ] = 0.
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Remark 9.12. If X and Y are independent, we know EXY = EXEY . How-
ever, we need not have E(XY | F) = E(X | F )E(Y | F ). So we can not prove the
above result by simply saying

(9.4) E
(
M(t)N(t)

∣∣ Fs) = E(M(t) | Fs)E(N(t) | Fs) = M(s)N(s)

becauseM and N are independent. ThusMN is a martingale, and hence [M,N ] = 0
by Proposition 9.8.

This reasoning is incorrect, even though the conclusion is correct. If you’re not
convinced, let me add that there exist martingales that are not continuous which
are independent and have nonzero joint quadratic variation. The above argument,
if correct, would certainly also work for martingales that are not continuous. The
error in the argument is that the first equality in (9.4) need not hold even though
M and N are independent.

Proof. Let P = {0 = t0 < t1 < · · · < tn = T} be a partition of [0, T ],
∆iM = M(ti+1)−M(ti) and ∆iN = N(ti+1)−N(ti). Observe

(9.5) E
(n−1∑
i=0

∆iM ∆iN
)2

= E

n−1∑
i=0

(∆iM)2(∆iN)2

+ 2E

n−1∑
j=0

j−1∑
i=0

∆iM ∆iN∆jM ∆jN .

We claim the cross term vanishes because of independence of M and N . Indeed,

E∆iM ∆iN∆jM ∆jN = E
(
∆iM ∆jM

)
E
(
∆iN ∆jN

)
= E

(
∆iME(∆jM | Ftj )

)
E
(
∆iN ∆jN

)
= 0 .

Thus from (9.5)

E
(n−1∑
i=0

∆iM ∆iN
)2

= E

n−1∑
i=0

(∆iM)2(∆iN)2 6 E
(

max
i

(∆iM)2
)(n−1∑

i=0
(∆iN)2

)
As ‖P‖ → 0, maxi ∆iM → 0 becauseM is continuous, and

∑
i(∆iN)2 → [N,N ](T ).

Thus we expect6

E[M,N ](T )2 = lim
‖P‖→0

E
(n−1∑
i=0

∆iM ∆iN
)2

= 0 ,

finishing the proof. �

Remark 9.13. The converse is false. If [M,N ] = 0, it does not mean that M
and N are independent. For example, if

M(t) =
∫ t

0
1{W (s)<0} dW (s) , and N(t) =

∫ t

0
1{W (s)>0} dW (s) ,

6For this step we need to use lim‖P‖→0 E(· · · ) = E lim‖P‖→0(· · · ). To make this rigorous we
need to apply the Lebesgue dominated convergence theorem. This is done by first assuming M and
N are bounded, and then choosing a localizing sequence of stopping times, and a full discussion
goes beyond the scope of these notes.
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then clearly [M,N ] = 0. However,

M(t) +N(t) =
∫ t

0
1 dW (s) = W (t) ,

and with a little work one can show that M and N are not independent.

Definition 9.14. We say W = (W1,W2, . . . ,Wd) is a standard d-dimensional
Brownian motion if:

(1) Each coordinate Wi is a standard (1-dimensional) Brownian motion.
(2) If i 6= j, the processes Wi and Wj are independent.

When working with a multi-dimensional Brownian motion, we usually choose
the filtration to be that generated by all the coordinates.

Definition 9.15. Let W be a d-dimensional Brownian motion. We define the
filtration {FWt } by

FWt = σ
( ⋃

s6t,
i∈{1,...,d}

σ(Wi(s))
)

With {FWt } defined above note that:
(1) Each coordinate Wi is a martingale with respect to {FWt }.
(2) For every s < t, the increment of each coordinate Wi(t)−Wi(s) is inde-

pendent of {FWs }.

Remark 9.16. SinceWi is independent ofWj when i 6= j, we know [Wi,Wj ] = 0
if i 6= j. When i = j, we know d[Wi,Wj ] = dt. We often express this concisely as

d[Wi,Wj ](t) = 1{i=j} dt .

An extremely important fact about Brownian motion is that the converse of
the above is also true.

Theorem 9.17 (Lévy). If M = (M1,M2, . . . ,Md) is a continuous martingale
such that M(0) = 0 and

d[Mi,Mj ](t) = 1{i=j} dt ,
then M is a d-dimensional Brownian motion.

Proof. The main idea behind the proof is to compute the moment generating
function (or characteristic function) of M , in the same way as in Problem 7.5. This
can be used to show that M(t)−M(s) is independent of Fs and M(t) ∼ N(0, tI),
where I is the d× d identity matrix. �

Example 9.18. If W is a 2-dimensional Brownian motion, then show that

B =
∫ t

0

W1(s)
|W (t)| dW1(s) +

∫ t

0

W2(s)
|W (t)| dW2(s) ,

is also a Brownian motion.

Proof. Since B is the sum of two Itô integrals, it is clearly a continuous
martingale. Thus to show that B is a Brownian motion, it suffices to show that
[B,B](t) = t. For this, define

X(t) =
∫ t

0

W1(s)
|W (t)| dW1(s) and Y (t) =

∫ t

0

W2(s)
|W (t)| dW2(s) ,
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and note

d[B,B](t) = d[X + Y,X + Y ](t) = d[X,X](t) + d[Y, Y ](t) + 2d[X,Y ](t)

=
(W1(t)2

|W (t)|2 + W2(t)2

|W (t)|2
)
dt+ 0 = dt .

So by Lévy’s criterion, B is a Brownian motion. �

Example 9.19. Let W be a 2-dimensional Brownian motion and define

X = ln(|W |2) = ln(W 2
1 +W 2

2 ) .

Compute dX. Is X a martingale?

Solution. This is a bit tricky. First, if we set f(x) = ln|x|2 = ln(x2
1 + x2

2),
then it is easy to check

∂if = 2xi
|x|2

and ∂2
1f + ∂2

2f = 0 .

Consequently,

dX(t) = 2W1(t)
|W |2

dW1(t) + 2W2(t)
|W |2

dW2(t) .

With this one would be tempted to say that since there are no dt terms above, X is
a martingale. This, however, is false! Martingales have constant expectation, but

EX(t) = 1
2πt

∫∫
R2

ln
(
x2

1 + x2
2
)

exp
(
−x

2
1 + x2

2
2t

)
dx1 dx2

= 1
2π

∫∫
R2

ln
(
t(y2

1 + y2
2)
)

exp
(
−y

2
1 + y2

2
2

)
dy1 dy2

= ln t+ 1
2π

∫∫
R2

ln
(
y2

1 + y2
2
)

exp
(
−y

2
1 + y2

2
2

)
dy1 dy2

t→∞−−−→∞ .

Thus EX(t) is not constant in t, and so X can not be a martingale. �

Remark 9.20. We have repeatedly used the fact that Itô integrals are martin-
gales. The example above obtains X as an Itô integral, but can not be a martingale.
The reason this doesn’t contradict Theorem 4.2 is that in order for Itô integral∫ t

0 σ(s) dW (s) to be defined, we only need the finiteness condition
∫ t

0 σ(s)2 ds <∞
almost surely. However, for an Itô integral to be a martingale, we need the stronger
condition E

∫ t
0 σ(s)2 ds < ∞ (given in (4.5)) to hold. This is precisely what fails

in the previous example. The process X above is an example of a local martingale
that is not a martingale, and we will encounter a similar situation when we study
exponential martingales and risk neutral measures.

Example 9.21. Let f = f(t, x1, . . . , xd) ∈ C1,2 and W be a d-dimensional
Brownian motion. Then Itô’s formula gives

d
(
f(t,W (t))

)
=
(
∂tf(t,W (t)) + 1

2∆f(t,W (t))
)
dt+

d∑
i=1

∂if(t,W (t)) dWi(t) .

Here ∆f =
∑d

1 ∂
2
i f is the Laplacian of f .
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Example 9.22. Consider a d-dimensional Brownian motion W , and n Itô
processes X1, . . . , Xn which we write (in differential form) as

dXi(t) = bi(t) dt+
d∑
k=1

σi,k(t) dWk(t) ,

where each bi and σi,j are adapted processes. For brevity, we will often write b
for the vector process (b1, . . . , bn), σ for the matrix process (σi,j) and X for the
n-dimensional Itô process (X1, . . . , Xn).

Now to compute [Xi, Xj ] we observe that d[Wi,Wj ] = dt if i = j and 0 otherwise.
Consequently,

d[Xi, Xj ](t) =
d∑

k,l=1
σi,kσj,l1{k=l} dt =

d∑
k=1

σi,k(t)σj,k(t) dt .

Thus if f is any C1,2 function, Itô formula gives

d
(
f(t,X(t))

)
=
(
∂tf +

n∑
i=1

bi∂if
)
dt+

n∑
i=1

σi∂if dWi(t) + 1
2

n∑
i,j=1

ai,j∂i∂jf dt

where

ai,j(t) =
N∑
k=1

σi,k(t)σj,k(t) .

In matrix notation, the matrix a = σσT , where σT is the transpose of the matrix σ.



CHAPTER 4

Risk Neutral Measures

Our aim in this section is to show how risk neutral measures can be used to
price derivative securities. The key advantage is that under a risk neutral measure
the discounted hedging portfolio becomes a martingale. Thus the price of any
derivative security can be computed by conditioning the payoff at maturity. We will
use this to provide an elegant derivation of the Black-Scholes formula, and discuss
the fundamental theorems of asset pricing.

1. The Girsanov Theorem.

Definition 1.1. Two probability measures P and P̃ are said to be equivalent
if for every event A, P (A) = 0 if and only if P̃ (A) = 0.

Example 1.2. Let Z be a random variable such that EZ = 1 and Z > 0.
Define a new measure P̃ by

(1.1) P̃ (A) = EZ1A =
∫
A

Z dP .

for every event A. Then P and P̃ are equivalent.
Remark 1.3. The assumption EZ = 1 above is required to guarantee P̃ (Ω) = 1.
Definition 1.4. When P̃ is defined by (1.1), we say

d P̃ = Z dP or Z = dP̃

dP
,

and Z is called the density of P̃ with respect to P .
Theorem 1.5 (Radon-Nikodym). Two measures P and P̃ are equivalent if

and only if there exists a random variable Z such that EZ = 1, Z > 0 and P̃ is
given by (1.1).

The proof of this requires a fair amount of machinery from Lebesgue integration
and goes beyond the scope of these notes. (This is exactly the result that is used to
show that conditional expectations exist.) However, when it comes to risk neutral
measures, it isn’t essential since in most of our applications the density will be
explicitly chosen.

Suppose now T > 0 is fixed, and Z is a martingale. Define a new measure
P̃ = P̃T by

dP̃ = dP̃T = Z(T )dP .

We will denote expectations and conditional expectations with respect to the new
measure by Ẽ. That is, given a random variable X,

ẼX = EZ(T )X =
∫
Z(T )X dP .

48
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Also, given a σ-algebra F , Ẽ(X | F) is the unique F-measurable random variable
such that

(1.2)
∫
F

Ẽ(X | F) dP̃ =
∫
F

X dP̃ ,

holds for all F measurable events F . Of course, equation (1.2) is equivalent to
requiring ∫

F

Z(T )Ẽ(X | F) dP =
∫
F

Z(T )X dP ,(1.2′)

for all F measurable events F .
The main goal of this section is to prove the Girsanov theorem.

Theorem 1.6 (Cameron, Martin, Girsanov). Let b(t) = (b1(t), b2(t), . . . , bd(t))
be a d-dimensional adapted process, W be a d-dimensional Brownian motion, and
define

W̃ (t) = W (t) +
∫ t

0
b(s) ds .

Let Z be the process defined by

Z(t) = exp
(
−
∫ t

0
b(s) · dW (s)− 1

2

∫ t

0
|b(s)|2 ds

)
,

and define a new measure P̃ = P̃T by dP̃ = Z(T ) dP . If Z is a martingale then W̃
is a Brownian motion under the measure P̃ up to time T .

Remark 1.7. Above

b(s) · dW (s) def=
d∑
i=1

bi(s) dWi(s) and |b(s)|2 =
d∑
i=1

bi(s)2 .

Remark 1.8. Note Z(0) = 1, and if Z is a martingale then EZ(T ) = 1
ensuring P̃ is a probability measure. You might, however, be puzzled at need for
the assumption that Z is a martingale. Indeed, let M(t) =

∫ t
0 b(s) · dW (s), and

f(t, x) = exp(−x− 1
2
∫ t

0 b(s)
2 ds). Then, by Itô’s formula,

dZ(t) = d
(
f(t,M(t))

)
= ∂tf dt+ ∂xf dM(t) + 1

2∂
2
xf d[M,M ](t)

= −1
2Z(t)|b(t)|2 dt− Z(t)b(t) · dW (t) + 1

2Z(t)|b(t)|2 dt ,

and hence
(1.3) dZ(t) = −Z(t)b(t) · dW (t) .
Thus you might be tempted to say that Z is always a martingale, assuming it
explicitly is unnecessary. However, we recall from Chapter 3, Theorem 4.2 in that
Itô integrals are only guaranteed to be martingales under the square integrability
condition

(1.4) E

∫ T

0
|Z(s)b(s)|2 ds <∞ .

Without this finiteness condition, Itô integrals are only local martingales, whose
expectation need not be constant, and so EZ(T ) = 1 is not guaranteed. Indeed,
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there are many examples of processes b where the finiteness condition (1.4) does
not hold and we have EZ(T ) < 1 for some T > 0.

Remark 1.9. In general the process Z above is always a super-martingale, and
hence EZ(T ) 6 1. Two conditions that guarantee Z is a martingale are the Novikov
and Kazamaki conditions: If either

E exp
(1

2

∫ t

0
|b(s)|2 ds

)
<∞ or E exp

(1
2

∫ t

0
b(s) · dW (s)

)
<∞ ,

then Z is a martingale and hence EZ(T ) = 1 for all T > 0. Unfortunately, in many
practical situations these conditions do not apply, and you have to show Z is a
martingale by hand.

Remark 1.10. The components b1, . . . , bd of the process b are not required to
be independent. Yet, under the new measure, the process W̃ is a Brownian motion
and hence has independent components.

The main idea behind the proof of the Girsanov theorem is the following: Clearly
[W̃i, W̃j ] = [Wi,Wj ] = 1{i=j}t. Thus if we can show that W̃ is a martingale with
respect to the new measure P̃ , then Lévy’s criterion will guarantee W̃ is a Brownian
motion. We now develop the tools required to check when processes are martingales
under the new measure.

Lemma 1.11. Let 0 6 s 6 t 6 T . If X is a Ft-measurable random variable then

(1.5) Ẽ
(
X
∣∣ Fs) = 1

Z(s)E
(
Z(t)X

∣∣ Fs)
Proof. Let A ∈ Fs and observe that∫
A

Ẽ(X | Fs) dP̃ =
∫
A

Z(T )Ẽ(X | Fs) dP

=
∫
A

E
(
Z(T )Ẽ(X

∣∣ Fs) ∣∣ Fs) dP =
∫
A

Z(s)Ẽ(X | Fs) dP .

Also,∫
A

Ẽ(X | Fs) dP̃ =
∫
A

X dP̃ =
∫
A

XZ(T ) dP =
∫
A

E
(
XZ(T )

∣∣ Ft) dP

=
∫
A

Z(t)X dP =
∫
A

E
(
Z(t)X

∣∣ Fs) dP

Thus ∫
A

Z(s)Ẽ(X | Fs) dP =
∫
A

E
(
Z(t)X

∣∣ Fs) dP ,

for every Fs measurable event A. Since the integrands are both Fs measurable this
forces them to be equal, giving (1.5) as desired. �

Lemma 1.12. An adapted process M is a martingale under P̃ if and only if
MZ is a martingale under P .

Proof. Suppose first MZ is a martingale with respect to P . Then

Ẽ(M(t) | Fs) = 1
Z(s)E(Z(t)M(t) | Fs) = 1

Z(s)Z(s)M(s) = M(s) ,

showing M is a martingale with respect to P .
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Conversely, suppose M is a martingale with respect to P̃ . Then
E
(
M(t)Z(t)

∣∣ Fs) = Z(s)Ẽ(M(t) | Fs) = Z(s)M(s) ,
and hence ZM is a martingale with respect to P . �

Proof of Theorem 1.6. Clearly W̃ is continuous and
d[W̃i, W̃j ](t) = d[Wi,Wj ](t) = 1{i=j} dt .

Thus if we show that each W̃i is a martingale (under P̃ ), then by Lévy’s criterion,
W̃ will be a Brownian motion under P̃ .

We now show that each W̃i is a martingale under P̃ . By Lemma 1.12, W̃i is a
martingale under P̃ if and only if ZW̃i is a martingale under P . To show ZW̃i is a
martingale under P , we use the product rule and (1.3) to compute

d
(
ZW̃i

)
= Z dW̃i + W̃i dZ + d[Z, W̃i]

= Z dWi + Zbi dt− W̃iZb · dW − biZ dt = Z dWi − W̃iZb · dW .

Thus ZW̃i is a martingale1 under P , and by Lemma 1.12, W̃i is a martingale
under P̃ . This finishes the proof. �

2. Risk Neutral Pricing

Consider a stock whose price is modelled by a generalized geometric Brownian
motion

dS(t) = α(t)S(t) dt+ σ(t)S(t) dW (t) ,
where α(t), σ(t) are the (time dependent) mean return rate and volatility respectively.
Here α and σ are no longer constant, but allowed to be adapted processes. We will,
however, assume σ(t) > 0.

Suppose an investor has access to a money market account with variable interest
rate R(t). Again, the interest rate R need not be constant, and is allowed to be any
adapted process. Define the discount process D by

D(t) = exp
(
−
∫ t

0
R(s) ds

)
,

and observe
dD(t) = −D(t)R(t) dt .

Since the price of one share of the money market account at time t is 1/D(t) times
the price of one share at time 0, it is natural to consider the discounted stock price
DS.

Definition 2.1. A risk neutral measure is a measure P̃ that is equivalent to
P under which the discounted stock price process D(t)S(t) is a martingale.

Remark 2.2. It turns out that the existence of a risk neutral measure is equiv-
alent to there being no arbitrage opportunity in the market. Moreover, uniqueness
of a risk neutral measure is equivalent to both the absence of an arbitrage opportu-
nity, and that every derivative security can be hedged. These are the fundamental
theorems of asset pricing.

1Technically, we have to check the square integrability condition to ensure that ZW̃i is a
martingale, and not a local martingale. This, however, follows quickly from the Cauchy-Schwartz
inequality and our assumption.
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Using the Girsanov theorem, we can compute the risk neutral measure explicitly.
Observe

d
(
D(t)S(t)

)
= −RDS dt+DdS = (α−R)DS dt+DSσ dW (t)

= σ(t)D(t)S(t)
(
θ(t) dt+ dW (t)

)
where

θ(t) def= α(t)−R(t)
σ(t)

is known as the market price of risk.
Define a new process W̃ by

dW̃ (t) = θ(t) dt+ dW (t) ,
and observe
(2.1) d

(
D(t)S(t)

)
dt = σ(t)D(t)S(t) dW̃ (t) .

Proposition 2.3. If Z is the process defined by

Z(t) = exp
(
−
∫ t

0
θ(s) dW (s)− 1

2

∫ t

0
θ(s)2 ds

)
,

then the measure P̃ = P̃T defined by dP̃ = Z(T ) dP is a risk neutral measure.

Proof. By the Girsanov theorem 1.6 we know W̃ is a Brownian motion under P̃ .
Thus using (2.1) we immediately see that the discounted stock price is a martingale.

�

Our next aim is to develop risk neutral pricing formula.

Theorem 2.4 (Risk Neutral Pricing formula). Let V (T ) be a FT -measurable
random variable that represents the payoff of a derivative security, and let P̃ = P̃T
be the risk neutral measure above. The arbitrage free price at time t of a derivative
security with payoff V (T ) and maturity T is given by

(2.2) V (t) = Ẽ
(

exp
(
−
∫ T

t

R(s) ds
)
V (T )

∣∣∣ Ft) .
Remark 2.5. It is important to note that the price V (t) above is the actual

arbitrage free price of the security, and there is no alternate “risk neutral world”
which you need to teleport to in order to apply this formula. The risk neutral
measure is simply a tool that is used in the above formula, which gives the arbitrage
free price under the standard measure.

As we will see shortly, the reason for this formula is that under the risk neutral
measure, the discounted replicating portfolio becomes a martingale. To understand
why this happens we note
(2.3) dS(t) = α(t)S(t) dt+ σ(t)S(t) dW (t) = R(t)S(t) dt+ σ(t)S(t) dW̃ .

Under the standard measure P this isn’t much use, since W̃ isn’t a martingale.
However, under the risk neutral measure, the process W̃ is a Brownian motion and
hence certainly a martingale. Moreover, S becomes a geometric Brownian motion
under P̃ with mean return rate of S exactly the same as that of the money market
account. The fact that S and the money market account have exactly the same
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mean return rate (under P̃ ) is precisely what makes the replicating portfolio (or
any self-financing portfolio for that matter) a martingale (under P̃ ).

Lemma 2.6. Let ∆ be any adapted process, and X(t) be the wealth of an investor
with that holds ∆(t) shares of the stock and the rest of his wealth in the money
market account. If there is no external cash flow (i.e. the portfolio is self financing),
then the discounted portfolio D(t)X(t) is a martingale under P̃ .

Proof. We know

dX(t) = ∆(t) dS(t) +R(t)(X(t)−∆(t)S(t)) dt .

Using (2.3) this becomes

dX(t) = ∆RS dt+ ∆σS dW̃ +RX dt−R∆S dt
= RX dt+ ∆σS dW̃ .

Thus, by the product rule,

d(DX) = DdX +X dD + d[D,X] = −RDX dt+DRXdt+D∆σS dW̃
= D∆σS dW̃ .

Since W̃ is a martingale under P̃ , DX must be a martingale under P̃ . �

Proof of Theorem 2.4. Suppose X(t) is the wealth of a replicating portfolio
at time t. Then by definition we know V (t) = X(t), and by the previous lemma we
know DX is a martingale under P̃ . Thus

V (t) = X(t) = 1
D(t)D(t)X(t) = 1

D(t)Ẽ
(
D(T )X(T )

∣∣ Ft) = Ẽ
(D(T )V (T )

D(t)

∣∣∣ Ft) ,
which is precisely (2.2). �

Remark 2.7. Our proof assumes that a security with payoff V (T ) has a
replicating portfolio. This is true in general because of the martingale representation
theorem, which guarantees any martingale (with respect to the Brownian filtration)
can be expressed as an Itô integral with respect to Brownian motion. Recall, we
already know that Itô integrals are martingales. The martingale representation
theorem is a partial converse.

Now clearly the process Y defined by

Y (t) = Ẽ
(

exp
(
−
∫ T

0
R(s) ds

)
V (T )

∣∣∣ Ft) ,
is a martingale. Thus, the martingale representation theorem can be used to express
this as an Itô integral (with respect to W̃ ). With a little algebraic manipulation
one can show that D(t)−1Y (t) is the wealth of a self financing portfolio. Since the
terminal wealth is clearly V (T ), this must be a replicating portfolio.

Remark 2.8. If V (T ) = f(S(T )) for some function f and R is not random, then
the Markov Property guarantees V (t) = c(t, S(t)) for some function c. Equating
c(t, S(t)) = X(t), the wealth of a replicating portfolio and using Itô’s formula, we
immediately obtain the Delta hedging rule

(2.4) ∆(t) = ∂xc(t, S(t)) .
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If, however, that if V is not of the form f(S(T )) for some function f , then the
option price will in general depend on the entire history of the stock price, and not
only the spot price S(t). In this case we will not (in general) have the delta hedging
rule (2.4).

3. The Black-Scholes formula

Recall our first derivation of the Black-Scholes formula only obtained a PDE.
The Black-Scholes formula is the solution to this PDE, which we simply wrote down
without motivation. The risk neutral pricing formula can be used to derive the
Black-Scholes formula quickly, and independently of our previous derivation. We
carry out this calculation in this section.

Suppose σ and R are deterministic constants, and for notational consistency,
set r = R. The risk neutral pricing formula says that the price of a European call is

c(t, S(t)) = Ẽ
(
e−r(T−t)(S(T )−K)+

∣∣∣ Ft) ,
where K is the strike price. Since

S(t) = S(0) exp
((
r − σ2

2

)
t+ σW̃ (t)

)
,

and W̃ is a Brownian motion under P̃ , we see

c(t, S(t)) = e−rτ Ẽ
([
S(0) exp

((
r − σ2

2

)
T + σW̃ (T )

)
−K

]+ ∣∣∣ Ft)
= e−rτ Ẽ

([
S(t) exp

((
r − σ2

2

)
τ + σ(W̃ (T )− W̃ (t))

)
−K

]+ ∣∣∣ Ft)
= e−rτ√

2π

∫
R

[
S(t) exp

((
r − σ2

2

)
τ + σ

√
τy
)
−K

]+
e−y

2/2dy ,

by the independence lemma. Here τ = T − t.
Now set S(t) = x,

d±(τ, x) def= 1
σ
√
τ

(
ln
( x
K

)
+
(
r ± σ2

2

)
τ
)
,

and

N(x) = 1√
2π

∫ x

−∞
e−y

2/2 dy = 1√
2π

∫ ∞
−x

e−y
2/2 dy .

Observe

c(t, x) = 1√
2π

∫ ∞
−d−

x exp
(−σ2τ

2 + σ
√
τy − y2

2

)
dy − e−rτKN(d−)

= 1√
2π

∫ ∞
−d−

x exp
(−(y − σ

√
τ)2

2

)
dy − e−rτKN(d−)

= xN(d+)− e−rτKN(d−) ,

which is precisely the Black-Scholes formula.
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4. Review Problems

Problem 4.1. Let f be a deterministic function, and define

X(t) def=
∫ t

0
f(s)W (s) ds .

Find the distribution of X.

Problem 4.2. Suppose σ, τ, ρ are three deterministic functions and M and N
are two martingales with respect to a common filtration {Ft} such that M(0) =
N(0) = 0, and

d[M,M ](t) = σ(t) dt , d[N,N ](t) = τ(t) dt , and d[M,N ](t) = ρ(t) dt .

(a) Compute the joint moment generating function E exp(λM(t) + µN(t)).
(b) (Lévy’s criterion) If σ = τ = 1 and ρ = 0, show that (M,N) is a two

dimensional Brownian motion.

Problem 4.3. Consider a financial market consisting of a risky asset and a
money market account. Suppose the return rate on the money market account is r,
and the price of the risky asset, denoted by S, is a geometric Brownian motion with
mean return rate α and volatility σ. Here r, α and σ are all deterministic constants.
Compute the arbitrage free price of derivative security that pays

V (T ) = 1
T

∫ T

0
S(t) dt

at maturity T . Also compute the trading strategy in the replicating portfolio.

Problem 4.4. Let X ∼ N(0, 1), and a, α, β ∈ R. Define a new measure P̃ by

dP̃ = exp
(
αX + β

)
dP .

Find α, β such that X + a ∼ N(0, 1) under P̃ .

Problem 4.5. Let x0, µ, θ, σ ∈ R, and suppose X is an Itô process that satisfies

dX(t) = θ(µ−X(t)) dt+ σ dW (t) ,

with X(0) = x0.
(a) Find functions f = f(t) and g = g(s, t) such that

X(t) = f(t) +
∫ t

0
g(s, t) dW (s) .

The functions f, g may depend on the parameters x0, θ, µ and σ, but should
not depend on X.

(b) Compute EX(t) and cov(X(s), X(t)) explicitly.

Problem 4.6. Let M be a martingale, and ϕ be a convex function. Must
the process ϕ(M) be a martingale, sub-martingale, or a super-martingale? If yes,
explain why. If no, find a counter example.

Problem 4.7. Let θ ∈ R and define

Z(t) = exp
(
θW (t)− θ2t

2

)
.
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Given 0 6 s < t, and a function f , find a function such that
E
(
f(Z(t))

∣∣ Fs) = g(Z(s)) .
Your formula for the function g can involve f , s, t and integrals, but not the process
Z or expectations.

Problem 4.8. Let W be a Brownian motion, and define

B(t) =
∫ t

0
sign(W (s)) dW (s) .

(a) Show that B is a Brownian motion.
(b) Is there an adapted process σ such that

W (t) =
∫ t

0
σ(s) dB(s) ?

If yes, find it. If no, explain why.
(c) Compute the joint quadratic variation [B,W ].
(d) Are B and W uncorrelated? Are they independent? Justify.

Problem 4.9. Let W be a Brownian motion. Does there exist an equivalent
measure P̃ under which the process tW (t) is a Brownian motion? Prove it.

Problem 4.10. Suppose M is a continuous process such that both M and M2

are martingales. Must M be constant in time? Prove it, or find a counter example.
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