46-944 Stochastic Calculus for Finance I: Final.

2020-03-04

- This is a closed book test. No electronic devices may be used. You may not give or receive assistance.
- You have 3 hours. The exam has a total of 8 questions and 40 points.
- The questions are roughly ordered by difficulty. Good luck $\ddot{\smile}$.

Unless otherwise stated, W denotes a standard (one dimensional) Brownian motion, and the filtration $\{\mathcal{F}_t \mid t \ge 0\}$ (if not otherwise specified) is the Brownian filtration.

- 5 1. Let 0 < r < s < t. Compute $E(W(s)W(t) | \mathcal{F}_r)$. Express your answer in terms of r, s, t and W(r) without involving expectations or integrals.
- 5 2. Let $W = (W_1, W_2)$ be a standard two dimensional Brownian motion. Find two adapted processes b and σ such that

$$X(t) = e^{-2t}W_1(t) + \int_0^t \sigma(s) \, dW_2(s) + \int_0^t b(s) \, ds$$

is a Brownian motion.

- 3. Let $\sigma, K, T > 0$, $\alpha \in \mathbb{R}$, and $r \ge 0$ be given constants. Consider a financial market consisting of a stock and a money market account. The money market account has continuously compounded interest rate r. The stock price, denoted by S, is a geometric Brownian motion with mean return rate α and volatility σ . Let $\Delta(t)$ denote the (possibly fractional) number of shares held at time t by the replicating portfolio of a European call option with strike K and maturity T. Let C(t) denote the wealth at time t of this replicating portfolio held in the money market account.
 - (a) Write down formulae for $\Delta(t)$ and C(t) in terms of t and S(t), and the model parameters σ, K , etc. No derivation / justification is required. Your formula may use the CDF of the standard normal, but must not involve any expectations or integrals.
 - (b) If S(T) > K, compute $\Delta(T)$ and C(T). Your answer may involve the model parameters (r, K, T, etc.), but must not involve expectations, integrals or even the CDF of the normal.
 - (c) If S(T) < K, compute $\Delta(T)$ and C(T). Your answer may involve the model parameters (r, K, T, etc.), but must not involve expectations, integrals or even the CDF of the normal.
- 5 4. Compute $E\left[W(t)^2 \int_0^t W(s) dW(s)\right]$. Express your answer in terms of t without involving W, expectations or integrals.
- 5. Let $\alpha \in \mathbb{R}$, $\sigma, T > 0$ and S be a geometric Brownian motion with mean return rate α and volatility σ .
 - (a) Find an equivalent measure $\tilde{\boldsymbol{P}}$ such that up to time *T*, the process *S* is a martingale under $\tilde{\boldsymbol{P}}$. Express the measure $\tilde{\boldsymbol{P}}$ in the form $d\tilde{\boldsymbol{P}} = Z(T)d\boldsymbol{P}$ for a process *Z* that you find explicitly.
 - (b) If 0 < s < t < T, compute $\tilde{E}[S(s)S(t)]$, where \tilde{E} denotes expectations with respect to the measure \tilde{P} . Express your answer in terms of r, s, t, T without using S, expectations or probabilities.
- 5 6. Let $M(t) = \int_0^t e^{-s} dW(s)$. Find a non-random function $f : \mathbb{R} \to \mathbb{R}$ such that f(0) = 0, $f(1) \neq 0$ and the process N defined by $N(t) = f(e^t M(t))$ is a martingale. Your final answer should write down a formula for f(x) for every $x \in \mathbb{R}$. (Your formula may involve unsimplified Riemann integrals.) Here f = f(x) is a function of one real variable x. To avoid getting confused I recommend you define a new function $g(t, x) = f(e^t x)$, and observe N(t) = g(t, M(t)).
- 5 7. Let $\sigma_1 > 0$, $\sigma_2 = 10\sigma_1$, $0 < T_1 < T$, α_1 , $\alpha_2 \in \mathbb{R}$ and $r \ge 0$ be given constants, and consider a financial market consisting of a stock and a money market account. The money market account has continuously compounded interest rate r. We expect that at time T_1 a global pandemic will decimate the population, leading to a stock market crash. Thus we model the stock price, denoted by S, by a geometric Brownian motion with mean return

rate α_1 and volatility σ_1 up to time T_1 . After time T_1 , we assume that the stock price will follow a geometric Brownian motion with mean return rate α_2 and volatility $\sigma_2 = 10\sigma_1$. Explicitly, this means

$$dS(t) = \alpha(t)S(t) dt + \sigma(t)S(t) dW(t), \quad \text{where } \alpha(t) = \begin{cases} \alpha_1 & t \leq T_1, \\ \alpha_2 & t > T_1, \end{cases} \text{ and } \sigma(t) = \begin{cases} \sigma_1 & t \leq T_1, \\ \sigma_2 & t > T_1. \end{cases}$$

Consider a European call option on S with strike K > 0 and maturity $T > T_1$. Find the arbitrage free price of this option at time a time $t \in [0, T_1]$. You may leave your answer as an unsimplified Riemann integral, as long as it only involves t, S(t), the model parameters ($\alpha_1, \alpha_2, \sigma_1$, etc.) and functions you have explicitly found formulae for. Your answer must not use probabilities or expectations.

HINT: Express S(T) in terms of $S(T_1)$, and express $S(T_1)$ in terms of S(t). Disclaimer: This problem is entirely hypothetical, and any similarity to current events is purely coincidental.

5 8. Let *B* and *W* be two independent, standard, one dimensional Brownian motions. Compute $E \int_{0}^{B(t)^{2}} W(s)^{2} ds$. Express your answer as a function of *t* without involving *W*, *B*, integrals, expectations or probabilities.