
CHAPTER 4

Risk Neutral Measures

Our aim in this section is to show how risk neutral measures can be used to
price derivative securities. The key advantage is that under a risk neutral measure
the discounted hedging portfolio becomes a martingale. Thus the price of any
derivative security can be computed by conditioning the payoff at maturity. We will
use this to provide an elegant derivation of the Black-Scholes formula, and discuss
the fundamental theorems of asset pricing.

1. The Girsanov Theorem.

Definition 1.1. Two probability measures P and P̃ are said to be equivalent
if for every event A, P (A) = 0 if and only if P̃ (A) = 0.

Example 1.2. Let Z be a random variable such that EZ = 1 and Z > 0.
Define a new measure P̃ by

(1.1) P̃ (A) = EZ1A =
∫
A

Z dP .

for every event A. Then P and P̃ are equivalent.

Remark 1.3. The assumption EZ = 1 above is required to guarantee P̃ (Ω) = 1.

Definition 1.4. When P̃ is defined by (1.1), we say

d P̃ = Z dP or Z = dP̃

dP
,

and Z is called the density of P̃ with respect to P .

Theorem 1.5 (Radon-Nikodym). Two measures P and P̃ are equivalent if
and only if there exists a random variable Z such that EZ = 1, Z > 0 and P̃ is
given by (1.1).

The proof of this requires a fair amount of machinery from Lebesgue integration
and goes beyond the scope of these notes. (This is exactly the result that is used to
show that conditional expectations exist.) However, when it comes to risk neutral
measures, it isn’t essential since in most of our applications the density will be
explicitly chosen.

Suppose now T > 0 is fixed, and Z is a martingale. Define a new measure
P̃ = P̃T by

dP̃ = dP̃T = Z(T )dP .

We will denote expectations and conditional expectations with respect to the new
measure by Ẽ. That is, given a random variable X,

ẼX = EZ(T )X =
∫
Z(T )X dP .

Also, given a σ-algebra F , Ẽ(X | F) is the unique F-measurable random variable
such that

(1.2)
∫
F

Ẽ(X | F) dP̃ =
∫
F

X dP̃ ,

holds for all F measurable events F . Of course, equation (1.2) is equivalent to
requiring ∫

F

Z(T )Ẽ(X | F) dP =
∫
F

Z(T )X dP ,(1.2′)

for all F measurable events F .
The main goal of this section is to prove the Girsanov theorem.

Theorem 1.6 (Cameron, Martin, Girsanov). Let b(t) = (b1(t), b2(t), . . . , bd(t))
be a d-dimensional adapted process, W be a d-dimensional Brownian motion, and
define

W̃ (t) = W (t) +
∫ t

0
b(s) ds .

Let Z be the process defined by

Z(t) = exp
(
−
∫ t

0
b(s) · dW (s)− 1

2

∫ t

0
|b(s)|2 ds

)
,

and define a new measure P̃ = P̃T by dP̃ = Z(T ) dP . If Z is a martingale then W̃
is a Brownian motion under the measure P̃ up to time T .

Remark 1.7. Above

b(s) · dW (s) def=
d∑
i=1

bi(s) dWi(s) and |b(s)|2 =
d∑
i=1

bi(s)2 .

Remark 1.8. Note Z(0) = 1, and if Z is a martingale then EZ(T ) = 1
ensuring P̃ is a probability measure. You might, however, be puzzled at need for
the assumption that Z is a martingale. Indeed, let M(t) =

∫ t
0 b(s) · dW (s), and

f(t, x) = exp(−x− 1
2
∫ t

0 b(s)
2 ds). Then, by Itô’s formula,

dZ(t) = d
(
f(t,M(t))

)
= ∂tf dt+ ∂xf dM(t) + 1

2∂
2
xf d[M,M ](t)

= −1
2Z(t)|b(t)|2 dt− Z(t)b(t) · dW (t) + 1

2Z(t)|b(t)|2 dt ,

and hence
(1.3) dZ(t) = −Z(t)b(t) · dW (t) .
Thus you might be tempted to say that Z is always a martingale, assuming it
explicitly is unnecessary. However, we recall from Chapter 3, Theorem 4.2 in that
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Itô integrals are only guaranteed to be martingales under the square integrability
condition

(1.4) E

∫ T

0
|Z(s)b(s)|2 ds <∞ .

Without this finiteness condition, Itô integrals are only local martingales, whose
expectation need not be constant, and so EZ(T ) = 1 is not guaranteed. Indeed,
there are many examples of processes b where the finiteness condition (1.4) does
not hold and we have EZ(T ) < 1 for some T > 0.

Remark 1.9. In general the process Z above is always a super-martingale, and
hence EZ(T ) 6 1. Two conditions that guarantee Z is a martingale are the Novikov
and Kazamaki conditions: If either

E exp
(1

2

∫ t

0
|b(s)|2 ds

)
<∞ or E exp

(1
2

∫ t

0
b(s) · dW (s)

)
<∞ ,

then Z is a martingale and hence EZ(T ) = 1 for all T > 0. Unfortunately, in many
practical situations these conditions do not apply, and you have to show Z is a
martingale by hand.

Remark 1.10. The components b1, . . . , bd of the process b are not required to
be independent. Yet, under the new measure, the process W̃ is a Brownian motion
and hence has independent components.

The main idea behind the proof of the Girsanov theorem is the following: Clearly
[W̃i, W̃j ] = [Wi,Wj ] = 1{i=j}t. Thus if we can show that W̃ is a martingale with
respect to the new measure P̃ , then Lévy’s criterion will guarantee W̃ is a Brownian
motion. We now develop the tools required to check when processes are martingales
under the new measure.

Lemma 1.11. Let 0 6 s 6 t 6 T . If X is a Ft-measurable random variable then

(1.5) Ẽ
(
X
∣∣ Fs) = 1

Z(s)E
(
Z(t)X

∣∣ Fs)
Proof. Let A ∈ Fs and observe that∫
A

Ẽ(X | Fs) dP̃ =
∫
A

Z(T )Ẽ(X | Fs) dP

=
∫
A

E
(
Z(T )Ẽ(X

∣∣ Fs) ∣∣ Fs) dP =
∫
A

Z(s)Ẽ(X | Fs) dP .

Also,∫
A

Ẽ(X | Fs) dP̃ =
∫
A

X dP̃ =
∫
A

XZ(T ) dP =
∫
A

E
(
XZ(T )

∣∣ Ft) dP

=
∫
A

Z(t)X dP =
∫
A

E
(
Z(t)X

∣∣ Fs) dP

Thus ∫
A

Z(s)Ẽ(X | Fs) dP =
∫
A

E
(
Z(t)X

∣∣ Fs) dP ,

for every Fs measurable event A. Since the integrands are both Fs measurable this
forces them to be equal, giving (1.5) as desired. �

Lemma 1.12. An adapted process M is a martingale under P̃ if and only if
MZ is a martingale under P .

Proof. Suppose first MZ is a martingale with respect to P . Then

Ẽ(M(t) | Fs) = 1
Z(s)E(Z(t)M(t) | Fs) = 1

Z(s)Z(s)M(s) = M(s) ,

showing M is a martingale with respect to P .
Conversely, suppose M is a martingale with respect to P̃ . Then

E
(
M(t)Z(t)

∣∣ Fs) = Z(s)Ẽ(M(t) | Fs) = Z(s)M(s) ,
and hence ZM is a martingale with respect to P . �

Proof of Theorem 1.6. Clearly W̃ is continuous and
d[W̃i, W̃j ](t) = d[Wi,Wj ](t) = 1{i=j} dt .

Thus if we show that each W̃i is a martingale (under P̃ ), then by Lévy’s criterion,
W̃ will be a Brownian motion under P̃ .

We now show that each W̃i is a martingale under P̃ . By Lemma 1.12, W̃i is a
martingale under P̃ if and only if ZW̃i is a martingale under P . To show ZW̃i is a
martingale under P , we use the product rule and (1.3) to compute

d
(
ZW̃i

)
= Z dW̃i + W̃i dZ + d[Z, W̃i]

= Z dWi + Zbi dt− W̃iZb · dW − biZ dt = Z dWi − W̃iZb · dW .

Thus ZW̃i is a martingale1 under P , and by Lemma 1.12, W̃i is a martingale
under P̃ . This finishes the proof. �

2. Risk Neutral Pricing

Consider a stock whose price is modelled by a generalized geometric Brownian
motion

dS(t) = α(t)S(t) dt+ σ(t)S(t) dW (t) ,
where α(t), σ(t) are the (time dependent) mean return rate and volatility respectively.
Here α and σ are no longer constant, but allowed to be adapted processes. We will,
however, assume σ(t) > 0.

Suppose an investor has access to a money market account with variable interest
rate R(t). Again, the interest rate R need not be constant, and is allowed to be any
adapted process. Define the discount process D by

D(t) = exp
(
−
∫ t

0
R(s) ds

)
,

and observe
dD(t) = −D(t)R(t) dt .

1Technically, we have to check the square integrability condition to ensure that ZW̃i is a
martingale, and not a local martingale. This, however, follows quickly from the Cauchy-Schwartz
inequality and our assumption.
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Since the price of one share of the money market account at time t is 1/D(t) times
the price of one share at time 0, it is natural to consider the discounted stock price
DS.

Definition 2.1. A risk neutral measure is a measure P̃ that is equivalent to
P under which the discounted stock price process D(t)S(t) is a martingale.

Remark 2.2. It turns out that the existence of a risk neutral measure is equiv-
alent to there being no arbitrage opportunity in the market. Moreover, uniqueness
of a risk neutral measure is equivalent to both the absence of an arbitrage opportu-
nity, and that every derivative security can be hedged. These are the fundamental
theorems of asset pricing.

Using the Girsanov theorem, we can compute the risk neutral measure explicitly.
Observe

d
(
D(t)S(t)

)
= −RDS dt+DdS = (α−R)DS dt+DSσ dW (t)

= σ(t)D(t)S(t)
(
θ(t) dt+ dW (t)

)
where

θ(t) def= α(t)−R(t)
σ(t)

is known as the market price of risk.
Define a new process W̃ by

dW̃ (t) = θ(t) dt+ dW (t) ,

and observe

(2.1) d
(
D(t)S(t)

)
dt = σ(t)D(t)S(t) dW̃ (t) .

Proposition 2.3. If Z is the process defined by

Z(t) = exp
(
−
∫ t

0
θ(s) dW (s)− 1

2

∫ t

0
θ(s)2 ds

)
,

then the measure P̃ = P̃T defined by dP̃ = Z(T ) dP is a risk neutral measure.

Proof. By the Girsanov theorem 1.6 we know W̃ is a Brownian motion under P̃ .
Thus using (2.1) we immediately see that the discounted stock price is a martingale.

�

Our next aim is to develop risk neutral pricing formula.

Theorem 2.4 (Risk Neutral Pricing formula). Let V (T ) be a FT -measurable
random variable that represents the payoff of a derivative security, and let P̃ = P̃T
be the risk neutral measure above. The arbitrage free price at time t of a derivative
security with payoff V (T ) and maturity T is given by

(2.2) V (t) = Ẽ
(

exp
(
−
∫ T

t

R(s) ds
)
V (T )

∣∣∣ Ft) .

Remark 2.5. It is important to note that the price V (t) above is the actual
arbitrage free price of the security, and there is no alternate “risk neutral world”
which you need to teleport to in order to apply this formula. The risk neutral
measure is simply a tool that is used in the above formula, which gives the arbitrage
free price under the standard measure.

As we will see shortly, the reason for this formula is that under the risk neutral
measure, the discounted replicating portfolio becomes a martingale. To understand
why this happens we note
(2.3) dS(t) = α(t)S(t) dt+ σ(t)S(t) dW (t) = R(t)S(t) dt+ σ(t)S(t) dW̃ .

Under the standard measure P this isn’t much use, since W̃ isn’t a martingale.
However, under the risk neutral measure, the process W̃ is a Brownian motion and
hence certainly a martingale. Moreover, S becomes a geometric Brownian motion
under P̃ with mean return rate of S exactly the same as that of the money market
account. The fact that S and the money market account have exactly the same
mean return rate (under P̃ ) is precisely what makes the replicating portfolio (or
any self-financing portfolio for that matter) a martingale (under P̃ ).

Lemma 2.6. Let ∆ be any adapted process, and X(t) be the wealth of an investor
with that holds ∆(t) shares of the stock and the rest of his wealth in the money
market account. If there is no external cash flow (i.e. the portfolio is self financing),
then the discounted portfolio D(t)X(t) is a martingale under P̃ .

Proof. We know
dX(t) = ∆(t) dS(t) +R(t)(X(t)−∆(t)S(t)) dt .

Using (2.3) this becomes
dX(t) = ∆RS dt+ ∆σS dW̃ +RX dt−R∆S dt

= RX dt+ ∆σS dW̃ .

Thus, by the product rule,
d(DX) = DdX +X dD + d[D,X] = −RDX dt+DRXdt+D∆σS dW̃

= D∆σS dW̃ .

Since W̃ is a martingale under P̃ , DX must be a martingale under P̃ . �

Proof of Theorem 2.4. Suppose X(t) is the wealth of a replicating portfolio
at time t. Then by definition we know V (t) = X(t), and by the previous lemma we
know DX is a martingale under P̃ . Thus

V (t) = X(t) = 1
D(t)D(t)X(t) = 1

D(t)Ẽ
(
D(T )X(T )

∣∣ Ft) = Ẽ
(D(T )V (T )

D(t)

∣∣∣ Ft) ,
which is precisely (2.2). �

Remark 2.7. Our proof assumes that a security with payoff V (T ) has a
replicating portfolio. This is true in general because of the martingale representation
theorem, which guarantees any martingale (with respect to the Brownian filtration)
can be expressed as an Itô integral with respect to Brownian motion. Recall, we
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already know that Itô integrals are martingales. The martingale representation
theorem is a partial converse.

Now clearly the process Y defined by

Y (t) = Ẽ
(

exp
(
−
∫ T

0
R(s) ds

)
V (T )

∣∣∣ Ft) ,
is a martingale. Thus, the martingale representation theorem can be used to express
this as an Itô integral (with respect to W̃ ). With a little algebraic manipulation
one can show that D(t)−1Y (t) is the wealth of a self financing portfolio. Since the
terminal wealth is clearly V (T ), this must be a replicating portfolio.

Remark 2.8. If V (T ) = f(S(T )) for some function f and R is not random, then
the Markov Property guarantees V (t) = c(t, S(t)) for some function c. Equating
c(t, S(t)) = X(t), the wealth of a replicating portfolio and using Itô’s formula, we
immediately obtain the Delta hedging rule

(2.4) ∆(t) = ∂xc(t, S(t)) .

If, however, that if V is not of the form f(S(T )) for some function f , then the
option price will in general depend on the entire history of the stock price, and not
only the spot price S(t). In this case we will not (in general) have the delta hedging
rule (2.4).

3. The Black-Scholes formula

Recall our first derivation of the Black-Scholes formula only obtained a PDE.
The Black-Scholes formula is the solution to this PDE, which we simply wrote down
without motivation. The risk neutral pricing formula can be used to derive the
Black-Scholes formula quickly, and independently of our previous derivation. We
carry out this calculation in this section.

Suppose σ and R are deterministic constants, and for notational consistency,
set r = R. The risk neutral pricing formula says that the price of a European call is

c(t, S(t)) = Ẽ
(
e−r(T−t)(S(T )−K)+

∣∣∣ Ft) ,
where K is the strike price. Since

S(t) = S(0) exp
((
r − σ2

2

)
t+ σW̃ (t)

)
,

and W̃ is a Brownian motion under P̃ , we see

c(t, S(t)) = e−rτ Ẽ
([
S(0) exp

((
r − σ2

2

)
T + σW̃ (T )

)
−K

]+ ∣∣∣ Ft)
= e−rτ Ẽ

([
S(t) exp

((
r − σ2

2

)
τ + σ(W̃ (T )− W̃ (t))

)
−K

]+ ∣∣∣ Ft)
= e−rτ√

2π

∫
R

[
S(t) exp

((
r − σ2

2

)
τ + σ

√
τy
)
−K

]+
e−y

2/2dy ,

by the independence lemma. Here τ = T − t.

Now set S(t) = x,

d±(τ, x) def= 1
σ
√
τ

(
ln
( x
K

)
+
(
r ± σ2

2

)
τ
)
,

and
N(x) = 1√

2π

∫ x

−∞
e−y

2/2 dy = 1√
2π

∫ ∞
−x

e−y
2/2 dy .

Observe

c(t, x) = 1√
2π

∫ ∞
−d−

x exp
(−σ2τ

2 + σ
√
τy − y2

2

)
dy − e−rτKN(d−)

= 1√
2π

∫ ∞
−d−

x exp
(−(y − σ

√
τ)2

2

)
dy − e−rτKN(d−)

= xN(d+)− e−rτKN(d−) ,

which is precisely the Black-Scholes formula.

4. Review Problems

Problem 4.1. Let f be a deterministic function, and define

X(t) def=
∫ t

0
f(s)W (s) ds .

Find the distribution of X.

Problem 4.2. Suppose σ, τ, ρ are three deterministic functions and M and N
are two martingales with respect to a common filtration {Ft} such that M(0) =
N(0) = 0, and

d[M,M ](t) = σ(t) dt , d[N,N ](t) = τ(t) dt , and d[M,N ](t) = ρ(t) dt .

(a) Compute the joint moment generating function E exp(λM(t) + µN(t)).
(b) (Lévy’s criterion) If σ = τ = 1 and ρ = 0, show that (M,N) is a two

dimensional Brownian motion.

Problem 4.3. Consider a financial market consisting of a risky asset and a
money market account. Suppose the return rate on the money market account is r,
and the price of the risky asset, denoted by S, is a geometric Brownian motion with
mean return rate α and volatility σ. Here r, α and σ are all deterministic constants.
Compute the arbitrage free price of derivative security that pays

V (T ) = 1
T

∫ T

0
S(t) dt

at maturity T . Also compute the trading strategy in the replicating portfolio.

Problem 4.4. Let X ∼ N(0, 1), and a, α, β ∈ R. Define a new measure P̃ by

dP̃ = exp
(
αX + β

)
dP .

Find α, β such that X + a ∼ N(0, 1) under P̃ .
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Problem 4.5. Let x0, µ, θ, σ ∈ R, and suppose X is an Itô process that satisfies
dX(t) = θ(µ−X(t)) dt+ σ dW (t) ,

with X(0) = x0.
(a) Find functions f = f(t) and g = g(s, t) such that

X(t) = f(t) +
∫ t

0
g(s, t) dW (s) .

The functions f, g may depend on the parameters x0, θ, µ and σ, but should
not depend on X.

(b) Compute EX(t) and cov(X(s), X(t)) explicitly.

Problem 4.6. Let M be a martingale, and ϕ be a convex function. Must
the process ϕ(M) be a martingale, sub-martingale, or a super-martingale? If yes,
explain why. If no, find a counter example.

Problem 4.7. Let θ ∈ R and define

Z(t) = exp
(
θW (t)− θ2t

2

)
.

Given 0 6 s < t, and a function f , find a function such that
E
(
f(Z(t))

∣∣ Fs) = g(Z(s)) .
Your formula for the function g can involve f , s, t and integrals, but not the process
Z or expectations.

Problem 4.8. Let W be a Brownian motion, and define

B(t) =
∫ t

0
sign(W (s)) dW (s) .

(a) Show that B is a Brownian motion.
(b) Is there an adapted process σ such that

W (t) =
∫ t

0
σ(s) dB(s) ?

If yes, find it. If no, explain why.
(c) Compute the joint quadratic variation [B,W ].
(d) Are B and W uncorrelated? Are they independent? Justify.

Problem 4.9. Let W be a Brownian motion. Does there exist an equivalent
measure P̃ under which the process tW (t) is a Brownian motion? Prove it.

Problem 4.10. Suppose M is a continuous process such that both M and M2

are martingales. Must M be constant in time? Prove it, or find a counter example.
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