21-268 Multidimensional Calculus: Midterm 1.

2020-02-12

- This is a closed book test. No electronic devices may be used. You may not give or receive assistance.
- You have 50 minutes. The exam has a total of 5 questions and 25 points.
- You may use any result proved in class or any regular homework problem **PROVIDED** it is independent of the problem you want to use the result in. (You must also **CLEARLY** state the result you are using.)
- The questions are roughly in increasing order of difficulty. Good luck ⊂.
- The questions are roughly in increasing order of afficulty. Good tack
- 1. Let f be a differentiable function of two variables, y_1 , y_2 . Suppose the variables y_1 , y_2 are each in turn differentiable functions of three variables x_1, x_2, x_3 . Finally suppose each variable x_1, x_2, x_3 is a differentiable function of one variable t. Find $\frac{df}{dt}$ in terms of the partial derivatives of f with respect to y_1, y_2 , the partial derivatives of y_1, y_2 with respect to x_1, x_2, x_3 and the derivatives of x_1, x_2, x_3 with respect to t. [Since there are many variables here, to avoid ambiguity please denote derivatives as $\partial f/\partial y_i$ etc. and not simply $\partial_i f$.]
- 5 2. Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable at a point $a \in \mathbb{R}^d$. Let $v \in \mathbb{R}^d$ be a non-zero vector. Does the directional derivative of f in the direction v exist at the point a? Prove it. [This is something we did in class. Please provide a direct, complete proof here without simply quoting the result from class.]
- 5 3. Let $f(x_1, x_2) = 2x_1 3x_2^2$. Show directly using the ε - δ definition that $\lim_{x \to (1,2)} f(x) = -10$.
- 5 4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x) = x_1^{2/3} x_2^{2/3}$. Is f differentiable at the point (0, 1)? Prove your answer.
- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x) = x_1^{2/3} x_2^{2/3}$. Is f differentiable at the point (0,0)? Prove your answer.