21-268 Review Session

Ruoyuan (Ryan) Liu, Yuepeng Yang
Carnegie Mellon University

May 5, 2020

Question 1

Find the tangent line of the curve implicitly defined by $x^{2}+y^{2}=z^{3}$ and $e^{z} \sin (x y)=0$ at the point $(0,1,1)$.

Question 1

Find the tangent line of the curve implicitly defined by $x^{2}+y^{2}=z^{3}$ and $e^{z} \sin (x y)=0$ at the point $(0,1,1)$.

Solution: Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined as

$$
f(x, y, z)=\binom{x^{2}+y^{2}-z^{3}}{e^{z} \sin (x y)}
$$

Question 1

Find the tangent line of the curve implicitly defined by $x^{2}+y^{2}=z^{3}$ and $e^{z} \sin (x y)=0$ at the point $(0,1,1)$.

Solution: Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined as

$$
f(x, y, z)=\binom{x^{2}+y^{2}-z^{3}}{e^{z} \sin (x y)}
$$

Compute the derivative:

$$
\begin{gathered}
D f_{(x, y, z)}=\left[\begin{array}{ccc}
2 x & 2 y & -3 z^{2} \\
y e^{z} \cos (x y) & x e^{z} \cos (x y) & e^{z} \sin (x y)
\end{array}\right] \\
D f_{(0,1,1)}=\left[\begin{array}{ccc}
0 & 2 & -3 \\
e & 0 & 0
\end{array}\right]
\end{gathered}
$$

Since $\operatorname{rank}\left(D f_{(0,1,1)}\right)=2$, the tangent space of the curve at $(0,1,1)$ is $\operatorname{ker}\left(D f_{(0,1,1)}\right)=\operatorname{span}\{(0,3,2)\}$.

Question 1

Find the tangent line of the curve implicitly defined by $x^{2}+y^{2}=z^{3}$ and $e^{z} \sin (x y)=0$ at the point $(0,1,1)$.

Solution: Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined as

$$
f(x, y, z)=\binom{x^{2}+y^{2}-z^{3}}{e^{z} \sin (x y)}
$$

Compute the derivative:

$$
\begin{gathered}
D f_{(x, y, z)}=\left[\begin{array}{ccc}
2 x & 2 y & -3 z^{2} \\
y e^{z} \cos (x y) & x e^{z} \cos (x y) & e^{z} \sin (x y)
\end{array}\right] \\
D f_{(0,1,1)}=\left[\begin{array}{ccc}
0 & 2 & -3 \\
e & 0 & 0
\end{array}\right]
\end{gathered}
$$

Since $\operatorname{rank}\left(D f_{(0,1,1)}\right)=2$, the tangent space of the curve at $(0,1,1)$ is $\operatorname{ker}\left(D f_{(0,1,1)}\right)=\operatorname{span}\{(0,3,2)\}$.
Thus, the tangent line at $(0,1,1)$ is $\{(0,1,1)+t(0,3,2): t \in \mathbb{R}\}$.

Question 2 (Leibniz's rule)

Suppose $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} and $f(x, y)$ is non-decreasing w.r.t y. Show that $\partial_{y} \int_{a}^{b} f(x, y) \mathrm{d} x=\int_{a}^{b} \partial_{y} f(x, y) \mathrm{d} x$.
(Hint: Fubini's theorem and FTC: $\partial_{t} \int_{c}^{t} g(s) \mathrm{d} s=g(t)$.)

Question 2 (Leibniz's rule)

Suppose $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} and $f(x, y)$ is non-decreasing w.r.t y.
Show that $\partial_{y} \int_{a}^{b} f(x, y) \mathrm{d} x=\int_{a}^{b} \partial_{y} f(x, y) \mathrm{d} x$.
(Hint: Fubini's theorem and FTC: $\partial_{t} \int_{c}^{t} g(s) \mathrm{d} s=g(t)$.)
Solution: By FTC,
$\partial_{y} \int_{a}^{b} f(x, y) \mathrm{d} x=\partial_{y} \int_{a}^{b} f(x, y)-f(x, 0) \mathrm{d} x=\partial_{y} \int_{a}^{b} \int_{0}^{y} \partial_{t} f(x, t) \mathrm{d} t \mathrm{~d} x$

Question 2 (Leibniz's rule)

Suppose $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} and $f(x, y)$ is non-decreasing w.r.t y.
Show that $\partial_{y} \int_{a}^{b} f(x, y) \mathrm{d} x=\int_{a}^{b} \partial_{y} f(x, y) \mathrm{d} x$.
(Hint: Fubini's theorem and FTC: $\partial_{t} \int_{c}^{t} g(s) \mathrm{d} s=g(t)$.)
Solution: By FTC,
$\partial_{y} \int_{a}^{b} f(x, y) \mathrm{d} x=\partial_{y} \int_{a}^{b} f(x, y)-f(x, 0) \mathrm{d} x=\partial_{y} \int_{a}^{b} \int_{0}^{y} \partial_{t} f(x, t) \mathrm{d} t \mathrm{~d} x$
By Fubini's theorem $\left(\partial_{t} f(x, t) \geq 0\right)$,

$$
\partial_{y} \int_{a}^{b} \int_{0}^{y} \partial_{t} f(x, t) \mathrm{d} t \mathrm{~d} x=\partial_{y} \int_{0}^{y} \int_{a}^{b} \partial_{t} f(x, t) \mathrm{d} x \mathrm{~d} t
$$

Question 2 (Leibniz's rule)

Suppose $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} and $f(x, y)$ is non-decreasing w.r.t y.
Show that $\partial_{y} \int_{a}^{b} f(x, y) \mathrm{d} x=\int_{a}^{b} \partial_{y} f(x, y) \mathrm{d} x$.
(Hint: Fubini's theorem and FTC: $\partial_{t} \int_{c}^{t} g(s) \mathrm{d} s=g(t)$.)
Solution: By FTC,
$\partial_{y} \int_{a}^{b} f(x, y) \mathrm{d} x=\partial_{y} \int_{a}^{b} f(x, y)-f(x, 0) \mathrm{d} x=\partial_{y} \int_{a}^{b} \int_{0}^{y} \partial_{t} f(x, t) \mathrm{d} t \mathrm{~d} x$
By Fubini's theorem $\left(\partial_{t} f(x, t) \geq 0\right)$,

$$
\partial_{y} \int_{a}^{b} \int_{0}^{y} \partial_{t} f(x, t) \mathrm{d} t \mathrm{~d} x=\partial_{y} \int_{0}^{y} \int_{a}^{b} \partial_{t} f(x, t) \mathrm{d} x \mathrm{~d} t
$$

By FTC,

$$
\partial_{y} \int_{0}^{y} \int_{a}^{b} \partial_{t} f(x, t) \mathrm{d} x \mathrm{~d} t=\int_{a}^{b} \partial_{y} f(x, y) \mathrm{d} x
$$

Question 2 (Leibniz's rule)

Suppose $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} and $f(x, y)$ is non-decreasing w.r.t y. Show that $\partial_{y} \int_{a}^{b} f(x, y) \mathrm{d} x=\int_{a}^{b} \partial_{y} f(x, y) \mathrm{d} x$.
(Hint: Fubini's theorem and FTC: $\partial_{t} \int_{c}^{t} g(s) \mathrm{d} s=g(t)$.)
Remark: Leibniz's rule is also true without the condition " $f(x, y)$ is non-decreasing w.r.t $y^{\prime \prime}$.

Question 2 (Leibniz's rule)

Suppose $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} and $f(x, y)$ is non-decreasing w.r.t y. Show that $\partial_{y} \int_{a}^{b} f(x, y) \mathrm{d} x=\int_{a}^{b} \partial_{y} f(x, y) \mathrm{d} x$.
(Hint: Fubini's theorem and FTC: $\partial_{t} \int_{c}^{t} g(s) \mathrm{d} s=g(t)$.)
Remark: Leibniz's rule is also true without the condition " $f(x, y)$ is non-decreasing w.r.t $y^{\prime \prime}$.

By the extreme value theorem, since $\partial_{t} f(x, t)$ is continuous on $[a, b] \times[0, y]$ (compact), we know that $\exists M \geq 0$ such that $\forall(x, t) \in[a, b] \times[0, y],\left|\partial_{t} f(x, t)\right| \leq M$.

Question 2 (Leibniz's rule)

Suppose $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} and $f(x, y)$ is non-decreasing w.r.t y. Show that $\partial_{y} \int_{a}^{b} f(x, y) \mathrm{d} x=\int_{a}^{b} \partial_{y} f(x, y) \mathrm{d} x$.
(Hint: Fubini's theorem and FTC: $\partial_{t} \int_{c}^{t} g(s) \mathrm{d} s=g(t)$.)
Remark: Leibniz's rule is also true without the condition " $f(x, y)$ is non-decreasing w.r.t $y^{\prime \prime}$.

By the extreme value theorem, since $\partial_{t} f(x, t)$ is continuous on $[a, b] \times[0, y]$ (compact), we know that $\exists M \geq 0$ such that $\forall(x, t) \in[a, b] \times[0, y],\left|\partial_{t} f(x, t)\right| \leq M$.

So, Fubini's theorem still applies.

Question 3

Let $f:[0,1]^{2} \rightarrow \mathbb{R}^{3}$ be defined as $f(x, y)=x y$. Let $G \subset \mathbb{R}^{3}$ be the graph of f. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined as $F(x, y, z)=\left(\frac{1}{2} y^{2}, x y, x y\right)$. Compute $\oint_{\partial G} F \cdot \mathrm{~d} \ell$, where ∂G is traversed counterclockwise w.r.t the upward pointing normal vector.

Question 3

Let $f:[0,1]^{2} \rightarrow \mathbb{R}^{3}$ be defined as $f(x, y)=x y$. Let $G \subset \mathbb{R}^{3}$ be the graph of f. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined as $F(x, y, z)=\left(\frac{1}{2} y^{2}, x y, x y\right)$. Compute $\oint_{\partial G} F \cdot \mathrm{~d} \ell$, where ∂G is traversed counterclockwise w.r.t the upward pointing normal vector.

Solution: We first parametrize G using $\varphi:[0,1]^{2} \rightarrow G$ defined as $\varphi(u, v)=(u, v, u v)$. We can compute the unit normal of G :

$$
\hat{n}=\frac{\partial_{u} \varphi \times \partial_{v} \varphi}{\left|\partial_{u} \varphi \times \partial_{v} \varphi\right|}=\frac{1}{\sqrt{u^{2}+v^{2}+1}}(-v,-u, 1)
$$

Question 3

Let $f:[0,1]^{2} \rightarrow \mathbb{R}^{3}$ be defined as $f(x, y)=x y$. Let $G \subset \mathbb{R}^{3}$ be the graph of f. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined as $F(x, y, z)=\left(\frac{1}{2} y^{2}, x y, x y\right)$. Compute $\oint_{\partial G} F \cdot \mathrm{~d} \ell$, where ∂G is traversed counterclockwise w.r.t the upward pointing normal vector.

Solution: We first parametrize G using $\varphi:[0,1]^{2} \rightarrow G$ defined as $\varphi(u, v)=(u, v, u v)$. We can compute the unit normal of G :

$$
\hat{n}=\frac{\partial_{u} \varphi \times \partial_{v} \varphi}{\left|\partial_{u} \varphi \times \partial_{v} \varphi\right|}=\frac{1}{\sqrt{u^{2}+v^{2}+1}}(-v,-u, 1)
$$

By Stoke's theorem,

$$
\begin{aligned}
\oint_{\partial G} F \cdot \mathrm{~d} \ell & =\int_{G} \nabla \times F \cdot \hat{n} \mathrm{~d} S=\int_{G}(x,-y, 0) \cdot \hat{n} \mathrm{~d} S \\
& =\int_{[0,1]^{2}}(u,-v, 0) \cdot \frac{1}{\sqrt{u^{2}+v^{2}+1}}(-v,-u, 1) \mathrm{d} A \\
& =\int_{[0,1]^{2}} 0 \mathrm{~d} A=0
\end{aligned}
$$

Question 4

Assuming you are allowed to use the mean value theorem in 1d, prove the mean value theorem in \mathbb{R}^{n} :
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable. For any $a, b \in \mathbb{R}^{n}$, there exists $\theta \in(0,1)$ such that

$$
f(b)-f(a)=(b-a) \cdot \nabla f((1-\theta) a+\theta b)
$$

Question 4

Assuming you are allowed to use the mean value theorem in 1d, prove the mean value theorem in \mathbb{R}^{n} :
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable. For any $a, b \in \mathbb{R}^{n}$, there exists $\theta \in(0,1)$ such that

$$
f(b)-f(a)=(b-a) \cdot \nabla f((1-\theta) a+\theta b)
$$

Solution

Define a function $g:[0,1] \rightarrow \mathbb{R}$ by $g(t)=f((1-t) a+t b) . g$ is differentiable and

$$
\left.\left.g^{\prime}(t)=\nabla f((1-t) a+t b)\right)(b-a)^{T}=(b-a) \cdot \nabla f((1-t) a+t b)\right)
$$

By mean value theorem for 1d,

$$
f(b)-f(a)=g(1)-g(0)=g^{\prime}(\theta)=(b-a) \cdot \nabla f((1-\theta) a+\theta b)
$$

for some $\theta \in(0,1)$

Question 5

Let $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ be a function satisfying $x^{2} f(x)+e^{f(x)}=x$. Calculate $f^{\prime}(x)$.

Question 5

Let $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ be a function satisfying $x^{2} f(x)+e^{f(x)}=x$. Calculate $f^{\prime}(x)$.
Solution: We differentiate the whole equation with respect to x, then

$$
2 x f(x)+x^{2} f^{\prime}(x)+f^{\prime}(x) e^{f(x)}=1
$$

So

$$
\begin{gathered}
x^{2} f^{\prime}(x)+f^{\prime}(x) e^{f(x)}=1-2 x f(x) \\
f^{\prime}(x)=\frac{1-2 x f(x)}{x^{2}+e^{f(x)}}
\end{gathered}
$$

Question 5

Let $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ be a function satisfying $x^{2} f(x)+e^{f(x)}=x$. Calculate $f^{\prime}(x)$.
Solution: We differentiate the whole equation with respect to x, then

$$
2 x f(x)+x^{2} f^{\prime}(x)+f^{\prime}(x) e^{f(x)}=1
$$

So

$$
\begin{gathered}
x^{2} f^{\prime}(x)+f^{\prime}(x) e^{f(x)}=1-2 x f(x) \\
f^{\prime}(x)=\frac{1-2 x f(x)}{x^{2}+e^{f(x)}}
\end{gathered}
$$

Remark. A more complicated version of this problem would write $x^{2} y+e^{y}=x$ and ask you when can you write one variable as a function of the other (locally), and compute the derivative. You need to use implicit function theorem.

Question 6

Prove the $\mathrm{AM}-\mathrm{GM}$ inequality: For $x, y \geq 0, \sqrt{x y} \leq \frac{x+y}{2}$ using constrained optimization.

Question 6

Prove the AM-GM inequality: For $x, y \geq 0, \sqrt{x y} \leq \frac{x+y}{2}$ using constrained optimization.

Solution:

We can prove it by optimizing $f(x, y)=\sqrt{x y}$ subject to $g(x, y)=\frac{x+y}{2}=c$ for some $c>0$.

Question 6

Prove the AM-GM inequality: For $x, y \geq 0, \sqrt{x y} \leq \frac{x+y}{2}$ using constrained optimization.

Solution:

We can prove it by optimizing $f(x, y)=\sqrt{x y}$ subject to $g(x, y)=\frac{x+y}{2}=c$ for some $c>0$.
For $x, y \neq 0, \nabla f(x, y)=\left(\frac{\sqrt{y}}{2 \sqrt{x}}, \frac{\sqrt{x}}{2 \sqrt{y}}\right)^{T}, \nabla g(x, y)=\left(\frac{1}{2}, \frac{1}{2}\right)^{T}$

Question 6

Prove the AM-GM inequality: For $x, y \geq 0, \sqrt{x y} \leq \frac{x+y}{2}$ using constrained optimization.

Solution:

We can prove it by optimizing $f(x, y)=\sqrt{x y}$ subject to $g(x, y)=\frac{x+y}{2}=c$ for some $c>0$.
For $x, y \neq 0, \nabla f(x, y)=\left(\frac{\sqrt{y}}{2 \sqrt{x}}, \frac{\sqrt{x}}{2 \sqrt{y}}\right)^{T}, \nabla g(x, y)=\left(\frac{1}{2}, \frac{1}{2}\right)^{T}$
We want $\nabla f(x, y)=\lambda \nabla g(x, y)$ for some $\lambda \in \mathbb{R}$. Then $\frac{\sqrt{y}}{\sqrt{x}}=\frac{\sqrt{x}}{\sqrt{y}}$, which implies $x=y=c . f(c, c)=c$.

Question 6

Prove the AM-GM inequality: For $x, y \geq 0, \sqrt{x y} \leq \frac{x+y}{2}$ using constrained optimization.

Solution:

We can prove it by optimizing $f(x, y)=\sqrt{x y}$ subject to $g(x, y)=\frac{x+y}{2}=c$ for some $c>0$.
For $x, y \neq 0, \nabla f(x, y)=\left(\frac{\sqrt{y}}{2 \sqrt{x}}, \frac{\sqrt{x}}{2 \sqrt{y}}\right)^{T}, \nabla g(x, y)=\left(\frac{1}{2}, \frac{1}{2}\right)^{T}$
We want $\nabla f(x, y)=\lambda \nabla g(x, y)$ for some $\lambda \in \mathbb{R}$. Then $\frac{\sqrt{y}}{\sqrt{x}}=\frac{\sqrt{x}}{\sqrt{y}}$, which implies $x=y=c . f(c, c)=c$.
We also need to check the boundary points $(0,2 c)$ and $(2 c, 0)$. $f(0,2 c)=f(2 c, 0)=0$. So the constrained maximum of f is c, which implies $f(x, y) \leq g(x, y)$ when $x, y \geq 0$.

Things you need to know for the final

Definitions:

- Open sets and closed sets in \mathbb{R}^{d}
- $\varepsilon-\delta$ definition of limits
- Continuity of functions
- Directional and partial derivatives
- Differentiability of functions
- Curve, surface, and manifold
- Tangent planes and tangent spaces
- Parametric curves
- Higher order derivatives
- Riemann integrals (double and triple integrals)
- Line integrals, arc length integrals, and surface integrals
- Conservative and potential forces

Theorems you should know

Theorems:

- Algebra of limits and continuous functions
- Differentiability \Rightarrow Continuity \& Existence of all directional derivatives
- All partial derivatives exist \& are continuous \Rightarrow Differentiability
- Chain rule
- Necessary and sufficient conditions for local maxima/minima
- Sylvester's law of signs
- Mean value theorem
- Taylor's theorem
- Inverse and implicit function theorem.
- Tangent space of $\{f(x)=c\}$
- Constrained optimization/Lagrange multiplier
- Fubini's theorem
- Change of variable formula
- Fundamental theorem of line integral
- Invariance of parametrizations
- Greens, Stokes, Divergence theorem

Good Luck for the Final!!!

