21-268 Review Session

Ruoyuan (Ryan) Liu, Yuepeng Yang

Carnegie Mellon University

May 5, 2020

Find the tangent line of the curve implicitly defined by $x^2 + y^2 = z^3$ and $e^z \sin(xy) = 0$ at the point (0,1,1).

Find the tangent line of the curve implicitly defined by $x^2 + y^2 = z^3$ and $e^z \sin(xy) = 0$ at the point (0,1,1).

Solution: Let
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 be defined as
$$f(x,y,z) = \begin{pmatrix} x^2 + y^2 - z^3 \\ e^z \sin(xy) \end{pmatrix}$$

Find the tangent line of the curve implicitly defined by $x^2 + y^2 = z^3$ and $e^z \sin(xy) = 0$ at the point (0,1,1).

Solution: Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be defined as $f(x, y, z) = \begin{pmatrix} x^2 + y^2 - z^3 \\ e^z \sin(xy) \end{pmatrix}$

Compute the derivative:

$$Df_{(x,y,z)} = \begin{bmatrix} 2x & 2y & -3z^2 \\ ye^z \cos(xy) & xe^z \cos(xy) & e^z \sin(xy) \end{bmatrix}$$

$$Df_{(0,1,1)} = \begin{bmatrix} 0 & 2 & -3 \\ e & 0 & 0 \end{bmatrix}$$

Since $rank(Df_{(0,1,1)}) = 2$, the tangent space of the curve at (0,1,1) is $ker(Df_{(0,1,1)}) = span\{(0,3,2)\}$.

Find the tangent line of the curve implicitly defined by $x^2 + y^2 = z^3$ and $e^z \sin(xy) = 0$ at the point (0,1,1).

Solution: Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be defined as

$$f(x, y, z) = \begin{pmatrix} x^2 + y^2 - z^3 \\ e^z \sin(xy) \end{pmatrix}$$

Compute the derivative:

$$Df_{(x,y,z)} = \begin{bmatrix} 2x & 2y & -3z^2 \\ ye^z \cos(xy) & xe^z \cos(xy) & e^z \sin(xy) \end{bmatrix}$$

$$Df_{(0,1,1)} = \begin{bmatrix} 0 & 2 & -3 \\ e & 0 & 0 \end{bmatrix}$$

Since $rank(Df_{(0,1,1)}) = 2$, the tangent space of the curve at (0,1,1) is $ker(Df_{(0,1,1)}) = span\{(0,3,2)\}$.

Thus, the tangent line at (0,1,1) is $\{(0,1,1)+t(0,3,2):t\in\mathbb{R}\}.$

Suppose $f: [a,b] \times \mathbb{R} \to \mathbb{R}$ is C^1 and f(x,y) is non-decreasing w.r.t y. Show that $\partial_V \int_a^b f(x,y) dx = \int_a^b \partial_V f(x,y) dx$.

(Hint: Fubini's theorem and FTC: $\partial_t \int_c^t g(s) ds = g(t)$.)

Suppose $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ is C^1 and f(x,y) is non-decreasing w.r.t y.

Show that $\partial_y \int_a^b f(x, y) dx = \int_a^b \partial_y f(x, y) dx$.

(Hint: Fubini's theorem and FTC: $\partial_t \int_c^t g(s) ds = g(t)$.)

Solution: By FTC,

$$\partial_y \int_a^b f(x,y) \, \mathrm{d}x = \partial_y \int_a^b f(x,y) - f(x,0) \, \mathrm{d}x = \partial_y \int_a^b \int_0^y \partial_t f(x,t) \, \mathrm{d}t \, \mathrm{d}x$$

Suppose $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ is C^1 and f(x,y) is non-decreasing w.r.t y.

Show that $\partial_y \int_a^b f(x,y) dx = \int_a^b \partial_y f(x,y) dx$.

(Hint: Fubini's theorem and FTC: $\partial_t \int_c^t g(s) ds = g(t)$.)

Solution: By FTC,

$$\partial_y \int_a^b f(x,y) \, \mathrm{d}x = \partial_y \int_a^b f(x,y) - f(x,0) \, \mathrm{d}x = \partial_y \int_a^b \int_0^y \partial_t f(x,t) \, \mathrm{d}t \, \mathrm{d}x$$

By Fubini's theorem $(\partial_t f(x,t) \geq 0)$,

$$\partial_y \int_a^b \int_0^y \partial_t f(x,t) dt dx = \partial_y \int_0^y \int_a^b \partial_t f(x,t) dx dt$$

Suppose $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ is C^1 and f(x,y) is non-decreasing w.r.t y.

Show that $\partial_y \int_a^b f(x,y) dx = \int_a^b \partial_y f(x,y) dx$.

(Hint: Fubini's theorem and FTC: $\partial_t \int_c^t g(s) ds = g(t)$.)

Solution: By FTC,

$$\partial_y \int_a^b f(x,y) \, \mathrm{d}x = \partial_y \int_a^b f(x,y) - f(x,0) \, \mathrm{d}x = \partial_y \int_a^b \int_0^y \partial_t f(x,t) \, \mathrm{d}t \, \mathrm{d}x$$

By Fubini's theorem $(\partial_t f(x,t) \geq 0)$,

$$\partial_y \int_a^b \int_0^y \partial_t f(x,t) dt dx = \partial_y \int_0^y \int_a^b \partial_t f(x,t) dx dt$$

By FTC,

$$\partial_y \int_0^y \int_a^b \partial_t f(x,t) dx dt = \int_a^b \partial_y f(x,y) dx$$

Suppose $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ is C^1 and f(x,y) is non-decreasing w.r.t y. Show that $\partial_y\int_a^b f(x,y)\mathrm{d}x=\int_a^b \partial_y f(x,y)\mathrm{d}x$. (Hint: Fubini's theorem and FTC: $\partial_t\int_a^t g(s)\,\mathrm{d}s=g(t)$.)

Remark: Leibniz's rule is also true without the condition "f(x, y) is non-decreasing w.r.t y".

Suppose $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ is C^1 and f(x,y) is non-decreasing w.r.t y. Show that $\partial_y\int_a^b f(x,y)\mathrm{d}x=\int_a^b \partial_y f(x,y)\mathrm{d}x$. (Hint: Fubini's theorem and FTC: $\partial_t\int_c^t g(s)\,\mathrm{d}s=g(t)$.)

Remark: Leibniz's rule is also true without the condition "f(x, y) is non-decreasing w.r.t y".

By the extreme value theorem, since $\partial_t f(x,t)$ is continuous on $[a,b] \times [0,y]$ (compact), we know that $\exists M \geq 0$ such that $\forall (x,t) \in [a,b] \times [0,y], \ |\partial_t f(x,t)| \leq M.$

Suppose $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ is C^1 and f(x,y) is non-decreasing w.r.t y. Show that $\partial_y\int_a^b f(x,y)\mathrm{d}x=\int_a^b \partial_y f(x,y)\mathrm{d}x$. (Hint: Fubini's theorem and FTC: $\partial_t\int_c^t g(s)\,\mathrm{d}s=g(t)$.)

Remark: Leibniz's rule is also true without the condition "f(x, y) is non-decreasing w.r.t y".

By the extreme value theorem, since $\partial_t f(x,t)$ is continuous on $[a,b] \times [0,y]$ (compact), we know that $\exists M \geq 0$ such that $\forall (x,t) \in [a,b] \times [0,y], \ |\partial_t f(x,t)| \leq M.$

So, Fubini's theorem still applies.

Let $f:[0,1]^2\to\mathbb{R}^3$ be defined as f(x,y)=xy. Let $G\subset\mathbb{R}^3$ be the graph of f. Let $F:\mathbb{R}^3\to\mathbb{R}^3$ be defined as $F(x,y,z)=(\frac{1}{2}y^2,xy,xy)$. Compute $\oint_{\partial G} F\cdot\mathrm{d}\ell$, where ∂G is traversed counterclockwise w.r.t the upward pointing normal vector.

Let $f:[0,1]^2\to\mathbb{R}^3$ be defined as f(x,y)=xy. Let $G\subset\mathbb{R}^3$ be the graph of f. Let $F:\mathbb{R}^3\to\mathbb{R}^3$ be defined as $F(x,y,z)=(\frac{1}{2}y^2,xy,xy)$. Compute $\oint_{\partial G}F\cdot\mathrm{d}\ell$, where ∂G is traversed counterclockwise w.r.t the upward pointing normal vector.

Solution: We first parametrize G using $\varphi:[0,1]^2\to G$ defined as $\varphi(u,v)=(u,v,uv)$. We can compute the unit normal of G: $\hat{n}=\frac{\partial_u\varphi\times\partial_v\varphi}{|\partial_u\varphi\times\partial_v\varphi|}=\frac{1}{\sqrt{u^2+v^2+1}}(-v,-u,1)$

Let $f:[0,1]^2\to\mathbb{R}^3$ be defined as f(x,y)=xy. Let $G\subset\mathbb{R}^3$ be the graph of f. Let $F:\mathbb{R}^3\to\mathbb{R}^3$ be defined as $F(x,y,z)=(\frac{1}{2}y^2,xy,xy)$. Compute $\oint_{\partial G}F\cdot\mathrm{d}\ell$, where ∂G is traversed counterclockwise w.r.t the upward pointing normal vector.

Solution: We first parametrize G using $\varphi:[0,1]^2\to G$ defined as $\varphi(u,v)=(u,v,uv)$. We can compute the unit normal of G:

$$\hat{n} = \frac{\partial_u \varphi \times \partial_v \varphi}{|\partial_u \varphi \times \partial_v \varphi|} = \frac{1}{\sqrt{u^2 + v^2 + 1}} (-v, -u, 1)$$

By Stoke's theorem,

$$\oint_{\partial G} F \cdot d\ell = \int_{G} \nabla \times F \cdot \hat{n} \, dS = \int_{G} (x, -y, 0) \cdot \hat{n} \, dS$$

$$= \int_{[0,1]^{2}} (u, -v, 0) \cdot \frac{1}{\sqrt{u^{2} + v^{2} + 1}} (-v, -u, 1) \, dA$$

$$= \int_{[0,1]^{2}} 0 \, dA = 0$$

Assuming you are allowed to use the mean value theorem in 1d, prove the mean value theorem in \mathbb{R}^n :

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. For any $a, b \in \mathbb{R}^n$, there exists $\theta \in (0, 1)$ such that

$$f(b) - f(a) = (b - a) \cdot \nabla f((1 - \theta)a + \theta b)$$

Assuming you are allowed to use the mean value theorem in 1d, prove the mean value theorem in \mathbb{R}^n :

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. For any $a, b \in \mathbb{R}^n$, there exists $\theta \in (0, 1)$ such that

$$f(b) - f(a) = (b - a) \cdot \nabla f((1 - \theta)a + \theta b)$$

Solution

Define a function $g:[0,1]\to\mathbb{R}$ by g(t)=f((1-t)a+tb). g is differentiable and

$$g'(t) = \nabla f((1-t)a + tb))(b-a)^T = (b-a) \cdot \nabla f((1-t)a + tb))$$

By mean value theorem for 1d,

$$f(b) - f(a) = g(1) - g(0) = g'(\theta) = (b - a) \cdot \nabla f((1 - \theta)a + \theta b)$$

for some $\theta \in (0,1)$

Let $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be a function satisfying $x^2 f(x) + e^{f(x)} = x$. Calculate f'(x).

Let $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be a function satisfying $x^2 f(x) + e^{f(x)} = x$. Calculate f'(x).

Solution: We differentiate the whole equation with respect to x, then

$$2xf(x) + x^2f'(x) + f'(x)e^{f(x)} = 1$$

So

$$x^{2}f'(x) + f'(x)e^{f(x)} = 1 - 2xf(x)$$
$$f'(x) = \frac{1 - 2xf(x)}{x^{2} + e^{f(x)}}$$

Let $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be a function satisfying $x^2 f(x) + e^{f(x)} = x$. Calculate f'(x).

Solution: We differentiate the whole equation with respect to x, then

$$2xf(x) + x^2f'(x) + f'(x)e^{f(x)} = 1$$

So

$$x^{2}f'(x) + f'(x)e^{f(x)} = 1 - 2xf(x)$$
$$f'(x) = \frac{1 - 2xf(x)}{x^{2} + e^{f(x)}}$$

Remark. A more complicated version of this problem would write $x^2y + e^y = x$ and ask you when can you write one variable as a function of the other (locally), and compute the derivative. You need to use implicit function theorem.

Prove the AM-GM inequality: For $x, y \ge 0$, $\sqrt{xy} \le \frac{x+y}{2}$ using constrained optimization.

Prove the AM-GM inequality: For $x, y \ge 0$, $\sqrt{xy} \le \frac{x+y}{2}$ using constrained optimization.

Solution:

We can prove it by optimizing $f(x,y) = \sqrt{xy}$ subject to

$$g(x,y) = \frac{x+y}{2} = c$$
 for some $c > 0$.

Prove the AM-GM inequality: For $x, y \ge 0$, $\sqrt{xy} \le \frac{x+y}{2}$ using constrained optimization.

Solution:

We can prove it by optimizing $f(x,y) = \sqrt{xy}$ subject to

$$g(x,y) = \frac{x+y}{2} = c$$
 for some $c > 0$.

For
$$x, y \neq 0$$
, $\nabla f(x, y) = (\frac{\sqrt{y}}{2\sqrt{x}}, \frac{\sqrt{x}}{2\sqrt{y}})^T$, $\nabla g(x, y) = (\frac{1}{2}, \frac{1}{2})^T$

Prove the AM-GM inequality: For $x, y \ge 0$, $\sqrt{xy} \le \frac{x+y}{2}$ using constrained optimization.

Solution:

We can prove it by optimizing $f(x,y) = \sqrt{xy}$ subject to

$$g(x,y) = \frac{x+y}{2} = c$$
 for some $c > 0$.

For
$$x, y \neq 0$$
, $\nabla f(x, y) = (\frac{\sqrt{y}}{2\sqrt{x}}, \frac{\sqrt{x}}{2\sqrt{y}})^T$, $\nabla g(x, y) = (\frac{1}{2}, \frac{1}{2})^T$

We want
$$\nabla f(x,y) = \lambda \nabla g(x,y)$$
 for some $\lambda \in \mathbb{R}$. Then $\frac{\sqrt{y}}{\sqrt{x}} = \frac{\sqrt{x}}{\sqrt{y}}$, which implies $x = y = c$, $f(c,c) = c$

implies x = y = c. f(c, c) = c.

Prove the AM-GM inequality: For $x, y \ge 0$, $\sqrt{xy} \le \frac{x+y}{2}$ using constrained optimization.

Solution:

We can prove it by optimizing $f(x,y) = \sqrt{xy}$ subject to

$$g(x,y) = \frac{x+y}{2} = c$$
 for some $c > 0$.

For
$$x, y \neq 0$$
, $\nabla f(x, y) = (\frac{\sqrt{y}}{2\sqrt{x}}, \frac{\sqrt{x}}{2\sqrt{y}})^T$, $\nabla g(x, y) = (\frac{1}{2}, \frac{1}{2})^T$

We want
$$\nabla f(x,y) = \lambda \nabla g(x,y)$$
 for some $\lambda \in \mathbb{R}$. Then $\frac{\sqrt{y}}{\sqrt{x}} = \frac{\sqrt{x}}{\sqrt{y}}$, which implies $x = y = c$. $f(c,c) = c$.

We also need to check the boundary points (0,2c) and (2c,0). f(0,2c)=f(2c,0)=0. So the constrained maximum of f is c, which implies $f(x,y)\leq g(x,y)$ when $x,y\geq 0$.

Things you need to know for the final

Definitions:

- ullet Open sets and closed sets in \mathbb{R}^d
- ε - δ definition of limits
- Continuity of functions
- Directional and partial derivatives
- Differentiability of functions
- Curve, surface, and manifold
- Tangent planes and tangent spaces
- Parametric curves
- Higher order derivatives
- Riemann integrals (double and triple integrals)
- Line integrals, arc length integrals, and surface integrals
- Conservative and potential forces

9/11

Theorems you should know

Theorems:

- Algebra of limits and continuous functions
- Differentiability ⇒ Continuity & Existence of all directional derivatives
- All partial derivatives exist & are continuous ⇒ Differentiability
- Chain rule
- Necessary and sufficient conditions for local maxima/minima
- Sylvester's law of signs
- Mean value theorem
- Taylor's theorem
- Inverse and implicit function theorem.
- Tangent space of $\{f(x) = c\}$
- Constrained optimization/Lagrange multiplier
- Fubini's theorem
- Change of variable formula
- Fundamental theorem of line integral
- Invariance of parametrizations
- Greens, Stokes, Divergence theorem

Good Luck for the Final!!!