
21-268: Multidimensional Calculus Spring 2020

Recitation April 28

Stokes Theorem

Recall the definition of the curl of a vector field R3 → R3

curl(F ) = ∇× F :=

∂2F3 − ∂3F2

∂3F1 − ∂1F3

∂1F2 − ∂2F1


The Stokes Theorem connects the surface integral of ∇ × F with line integral of F at the
boundry.

Theorem 1 Let U ⊂ R3 be a domain, (Σ, n̂) ⊂ U be a bounded, oriented, piecewise C1

surface whose boundary is a piecewise C1 curve Γ. If F : U → R3 is a C1 vector field, then∫
Σ

∇× F · n̂dS =

∮
Γ

F · dl

The line integral is calculated counter-clockwise (w.r.t. n̂) for outer boundary and clockwise
for inner boundary (holes)

Example 1

Let Σ = {(x, y,
√

1− x2 − y2) : x2 + y2 ≤ 1}, F : R3 → R3 be

F (x, y, z) = (z, x, y)

Compute ∫
Σ

∇× F · n̂ dS

where n̂ is the upward unit normal

Solution Let Γ = ∂Σ = {(x, y, 0) : x2 + y2 = 1} (the unit circle with z = 0).

Since Γ, F,Σ are obviously C1, we can use the Stokes theorem and use the parametrization
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γ : [0, 2π]→ Γ, γ(t) = (cos t, sin t, 0)∫
Σ

∇× F · n̂ dS =

∫
Γ

F · dl

=

∫ 2π

0

 0
cos t
sin t

 ·
− sin t

cos t
0

 dt

=

∫ 2π

0

cos2 tdt

=

∫ 2π

0

1

2
(1 + cos(2t))dt

=

[
1

2
t+

1

4
sin(2t)

] ∣∣∣∣∣
2π

t=0

= π

Another way to compute it is that notice that Γ is also the boundary of the disk Σ′ :=
{(x, y, 0) : x2 + y2 ≤ 1}, then applying Stokes twice we have∫

Σ

∇× F · n̂ dS =

∫
Γ

F · dl

=

∫
Σ′
∇× F · n̂ dS

=

∫
Σ′

1
1
1

 ·
0

0
1

 dS

=

∫
Σ′

1 dS

= Area(Σ′) = π

Remark: Be careful with orientation.

Example 2 In this example we will prove the following lemma.

Let Σ ⊂ R3 be a C1 bounded oriented surface and and ∂Σ = Γ be a closed C1 curve in R3,
f : R3 → R a C2 function, then

∫
Γ
∇f · dl = 0

Proof: Let’s prove this in two ways.

First we use the Stokes theorem.

Since f ∈ C2,

∇×∇f =

∂2∂3f − ∂3∂2f
∂3∂1f − ∂1∂3f
∂1∂2f − ∂2∂1f

 = 0
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So by Stokes theorem, ∫
Γ

∇f · dl =

∫
Σ

0 · n̂ dS = 0

The second way is the fundamental theorem of line integral, can any point a on Γ, then the
fundamental theorem of line integral tells us∫

Γ

∇f · dl = f(a)− f(a) = 0

(This actually only need f ∈ C1 and Γ)

Divergence Theorem

Let U ⊂ R3 be open and F : U → R3 be a C1 vector field. The divergence of F is

div(F ) = ∇ · F = ∂1F1 + ∂2F2 + ∂3F3

Theorem 2 Let U ⊂ R3 be a bounded region such that ∂U is a piecewise C1 surface. Let
F : U → R3 be a C1 vector field and n̂ the outward pointing normal vector on ∂U . Then,∫

U

∇ · F dV =

∫
∂U

F · n̂ dS

Example 1: Compute
∫

Σ
F · n̂ dS, where F (x, y, z) = (xz+ 3,−268y,−1

2
z2), n̂ is an inward

pointing normal vector, and Σ is the surface of the following object:
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Solution: We note that Σ is a closed surface. Let U be the region enclosed by Σ. By
divergence theorem, we have∫

Σ

F · n̂ dS = −
∫

Σ

F · (−n̂) dS

= −
∫
U

∇ ·

 xz + 3
−268xy
−1

2
z2

 dV

=

∫
U

268x dV

=

∫ 2

0

∫ 1

−1

∫ 1

−1

268x dx dy dz +

∫ 3

2

∫ 3−z

z−3

∫ 3−z

z−3

268x dx dy dz (Fubini)

= 0 + 0

= 0

Example 2: Let U ⊂ R3 be a bounded region such that ∂U is a piecewise C1 surface. Let
u : U → R be a C2 function. Show that if u is harmonic (∆u = 0), then

∫
∂U
∇u · n̂ dS = 0.

Solution: Note that

∇ · ∇u =
3∑
i=1

∂i(∂iu) =
3∑
i=1

∂2
i u = ∆u

Thus, by divergence theorem,∫
∂U

∇u · n̂ dS =

∫
U

∇ · ∇u dV =

∫
U

∆u dV = 0

as desired.

Example 3: (Green’s first identity)

Let U ⊂ R3 be a bounded region such that ∂U is a piecewise C1 surface. Let f, g : U → R
be C2 functions. Then,∫

U

∇f · ∇g dV = −
∫
U

f∆g dV +

∫
∂U

f∇g · n̂ dS

Solution: Note that

∇ · (f∇g) =
3∑
i=1

∂i(f∂ig) =
3∑
i=1

∂if∂ig + f∂2
i g = ∇f · ∇g + f∆g
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Thus, by divergence theorem,∫
∂U

f∇g · n̂ dS =

∫
U

∇ · (f∇g) dV =

∫
U

∇f · ∇g dV +

∫
U

f∆g dV

as desired.


