## 21-268: Multidimensional Calculus

## Recitation April 28

## Stokes Theorem

Recall the definition of the curl of a vector field $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

$$
\operatorname{curl}(F)=\nabla \times F:=\left(\begin{array}{l}
\partial_{2} F_{3}-\partial_{3} F_{2} \\
\partial_{3} F_{1}-\partial_{1} F_{3} \\
\partial_{1} F_{2}-\partial_{2} F_{1}
\end{array}\right)
$$

The Stokes Theorem connects the surface integral of $\nabla \times F$ with line integral of $F$ at the boundry.

Theorem 1 Let $U \subset \mathbb{R}^{3}$ be a domain, $(\Sigma, \hat{n}) \subset U$ be a bounded, oriented, piecewise $C^{1}$ surface whose boundary is a piecewise $C^{1}$ curve $\Gamma$. If $F: U \rightarrow \mathbb{R}^{3}$ is a $C^{1}$ vector field, then

$$
\int_{\Sigma} \nabla \times F \cdot \hat{n} d S=\oint_{\Gamma} F \cdot d l
$$

The line integral is calculated counter-clockwise (w.r.t. $\hat{n}$ ) for outer boundary and clockwise for inner boundary (holes)

## Example 1

Let $\Sigma=\left\{\left(x, y, \sqrt{1-x^{2}-y^{2}}\right): x^{2}+y^{2} \leq 1\right\}, F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be

$$
F(x, y, z)=(z, x, y)
$$

Compute

$$
\int_{\Sigma} \nabla \times F \cdot \hat{n} d S
$$

where $\hat{n}$ is the upward unit normal
Solution Let $\Gamma=\partial \Sigma=\left\{(x, y, 0): x^{2}+y^{2}=1\right\}$ (the unit circle with $z=0$ ).
Since $\Gamma, F, \Sigma$ are obviously $C^{1}$, we can use the Stokes theorem and use the parametrization
$\gamma:[0,2 \pi] \rightarrow \Gamma, \gamma(t)=(\cos t, \sin t, 0)$

$$
\begin{aligned}
\int_{\Sigma} \nabla \times F \cdot \hat{n} d S & =\int_{\Gamma} F \cdot d l \\
& =\int_{0}^{2 \pi}\left(\begin{array}{c}
0 \\
\cos t \\
\sin t
\end{array}\right) \cdot\left(\begin{array}{c}
-\sin t \\
\cos t \\
0
\end{array}\right) d t \\
& =\int_{0}^{2 \pi} \cos ^{2} t d t \\
& =\int_{0}^{2 \pi} \frac{1}{2}(1+\cos (2 t)) d t \\
& =\left.\left[\frac{1}{2} t+\frac{1}{4} \sin (2 t)\right]\right|_{t=0} ^{2 \pi} \\
& =\pi
\end{aligned}
$$

Another way to compute it is that notice that $\Gamma$ is also the boundary of the disk $\Sigma^{\prime}:=$ $\left\{(x, y, 0): x^{2}+y^{2} \leq 1\right\}$, then applying Stokes twice we have

$$
\begin{aligned}
\int_{\Sigma} \nabla \times F \cdot \hat{n} d S & =\int_{\Gamma} F \cdot d l \\
& =\int_{\Sigma^{\prime}} \nabla \times F \cdot \hat{n} d S \\
& =\int_{\Sigma^{\prime}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) d S \\
& =\int_{\Sigma^{\prime}} 1 d S \\
& =\operatorname{Area}\left(\Sigma^{\prime}\right)=\pi
\end{aligned}
$$

Remark: Be careful with orientation.
Example 2 In this example we will prove the following lemma.
Let $\Sigma \subset \mathbb{R}^{3}$ be a $C^{1}$ bounded oriented surface and and $\partial \Sigma=\Gamma$ be a closed $C^{1}$ curve in $\mathbb{R}^{3}$, $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ a $C^{2}$ function, then $\int_{\Gamma} \nabla f \cdot d l=0$

Proof: Let's prove this in two ways.
First we use the Stokes theorem.
Since $f \in C^{2}$,

$$
\nabla \times \nabla f=\left(\begin{array}{l}
\partial_{2} \partial_{3} f-\partial_{3} \partial_{2} f \\
\partial_{3} \partial_{1} f-\partial_{1} \partial_{3} f \\
\partial_{1} \partial_{2} f-\partial_{2} \partial_{1} f
\end{array}\right)=0
$$

So by Stokes theorem,

$$
\int_{\Gamma} \nabla f \cdot d l=\int_{\Sigma} 0 \cdot \hat{n} d S=0
$$

The second way is the fundamental theorem of line integral, can any point $a$ on $\Gamma$, then the fundamental theorem of line integral tells us

$$
\int_{\Gamma} \nabla f \cdot d l=f(a)-f(a)=0
$$

(This actually only need $f \in C^{1}$ and $\Gamma$ )

## Divergence Theorem

Let $U \subset \mathbb{R}^{3}$ be open and $F: U \rightarrow \mathbb{R}^{3}$ be a $C^{1}$ vector field. The divergence of $F$ is

$$
\operatorname{div}(F)=\nabla \cdot F=\partial_{1} F_{1}+\partial_{2} F_{2}+\partial_{3} F_{3}
$$

Theorem 2 Let $U \subset \mathbb{R}^{3}$ be a bounded region such that $\partial U$ is a piecewise $C^{1}$ surface. Let $F: \bar{U} \rightarrow \mathbb{R}^{3}$ be a $C^{1}$ vector field and $\hat{n}$ the outward pointing normal vector on $\partial U$. Then,

$$
\int_{U} \nabla \cdot F \mathrm{~d} V=\int_{\partial U} F \cdot \hat{n} \mathrm{~d} S
$$

Example 1: Compute $\int_{\Sigma} F \cdot \hat{n} \mathrm{~d} S$, where $F(x, y, z)=\left(x z+3,-268 y,-\frac{1}{2} z^{2}\right), \hat{n}$ is an inward pointing normal vector, and $\Sigma$ is the surface of the following object:


Solution: We note that $\Sigma$ is a closed surface. Let $U$ be the region enclosed by $\Sigma$. By divergence theorem, we have

$$
\begin{aligned}
\int_{\Sigma} F \cdot \hat{n} \mathrm{~d} S & =-\int_{\Sigma} F \cdot(-\hat{n}) \mathrm{d} S \\
& =-\int_{U} \nabla \cdot\left(\begin{array}{c}
x z+3 \\
-268 x y \\
-\frac{1}{2} z^{2}
\end{array}\right) \mathrm{d} V \\
& =\int_{U} 268 x \mathrm{~d} V \\
& =\int_{0}^{2} \int_{-1}^{1} \int_{-1}^{1} 268 x \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z+\int_{2}^{3} \int_{z-3}^{3-z} \int_{z-3}^{3-z} 268 x \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \quad \text { (Fubini) } \\
& =0+0 \\
& =0
\end{aligned}
$$

Example 2: Let $U \subset \mathbb{R}^{3}$ be a bounded region such that $\partial U$ is a piecewise $C^{1}$ surface. Let $u: \bar{U} \rightarrow \mathbb{R}$ be a $C^{2}$ function. Show that if $u$ is harmonic $(\Delta u=0)$, then $\int_{\partial U} \nabla u \cdot \hat{n} \mathrm{~d} S=0$.
Solution: Note that

$$
\nabla \cdot \nabla u=\sum_{i=1}^{3} \partial_{i}\left(\partial_{i} u\right)=\sum_{i=1}^{3} \partial_{i}^{2} u=\Delta u
$$

Thus, by divergence theorem,

$$
\int_{\partial U} \nabla u \cdot \hat{n} \mathrm{~d} S=\int_{U} \nabla \cdot \nabla u \mathrm{~d} V=\int_{U} \Delta u \mathrm{~d} V=0
$$

as desired.

Example 3: (Green's first identity)
Let $U \subset \mathbb{R}^{3}$ be a bounded region such that $\partial U$ is a piecewise $C^{1}$ surface. Let $f, g: \bar{U} \rightarrow \mathbb{R}$ be $C^{2}$ functions. Then,

$$
\int_{U} \nabla f \cdot \nabla g \mathrm{~d} V=-\int_{U} f \Delta g \mathrm{~d} V+\int_{\partial U} f \nabla g \cdot \hat{n} \mathrm{~d} S
$$

Solution: Note that

$$
\nabla \cdot(f \nabla g)=\sum_{i=1}^{3} \partial_{i}\left(f \partial_{i} g\right)=\sum_{i=1}^{3} \partial_{i} f \partial_{i} g+f \partial_{i}^{2} g=\nabla f \cdot \nabla g+f \Delta g
$$

Thus, by divergence theorem,

$$
\int_{\partial U} f \nabla g \cdot \hat{n} \mathrm{~d} S=\int_{U} \nabla \cdot(f \nabla g) \mathrm{d} V=\int_{U} \nabla f \cdot \nabla g \mathrm{~d} V+\int_{U} f \Delta g \mathrm{~d} V
$$

as desired.

