Recitation April 14

The Area of an Ellipse

Green's theorem is handy to transform a hard-to-compute line integral to an easier area integral, and sometimes the other way around.

Example Consider an ellipse in \mathbb{R}^2 , namely

$$\Gamma := \left\{ (x, y) : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\}$$

where $0 < a, b \in \mathbb{R}$. Calculate the area of the region Ω enclosed by this curve Γ .

Solution One way to do it is a simple coordinate change we saw last time.

The other way is through Green's theorem. Recall in the Greens theorem we have

$$\int_{\Omega} \partial_1 F_2 - \partial_2 F_1 dA = \int_{\Gamma} F \cdot dt$$

So to calculate

$$\operatorname{Area}(\Omega) = \int_{\Omega} 1 dA$$

We want to use some F such that $\partial_1 F_2 - \partial_2 F_1 = 1$. There are many choices of F that is valid, but they may lead to different level of difficulty on evaluating the line integral.

Let's first parameterize Γ . Similar to a circle, which is a special case of the an ellipse, we can use $\gamma : [0, 2\pi] \to \mathbb{R}^2$ defined via

$$\gamma(t) = (a\cos t, b\sin t)$$

Then if we choose F = (0, x), the line integral becomes

$$\int_{\Gamma} \begin{pmatrix} 0\\x \end{pmatrix} \cdot dl = \int_{0}^{2\pi} \begin{pmatrix} 0\\a\cos t \end{pmatrix} \cdot \begin{pmatrix} -a\sin t\\b\cos t \end{pmatrix} dt = ab \int_{0}^{2\pi} \cos^{2}t dt$$

We can also choose F = (-y/2, x/2), than the line integral becomes

$$\frac{1}{2} \int_{\Gamma} \binom{-y}{x} \cdot dl = \frac{1}{2} \int_{0}^{2\pi} \binom{-b\sin t}{a\cos t} \cdot \binom{-a\sin t}{b\cos t} dt = \frac{1}{2} \int_{0}^{2\pi} ab \ dt = \pi ab$$

(It's not difficult to calculate integration of $\cos^2 t$, but this choice of F makes it even easier)

Another example of Green's theorem

Let U be the region bounded by the functions y = 2x and $y = x^2$ in the first quadrant, and let $F(x, y) = (x^2y, xy^2)$. Compute $\int_{\partial U} F \cdot dl$ both directly and using Green's theorem.

Solution 1

Let $\gamma: [0,4] \to \partial U$ be defined as

$$\gamma(t) = \begin{cases} (t, t^2) & \text{if } t \in [0, 2] \\ (4 - t, 8 - 2t) & \text{if } t \in (2, 4] \end{cases}$$

Note that γ is a parametrization of ∂U . Thus,

$$\begin{split} \int_{\partial U} F \cdot \mathrm{d}l &= \int_{0}^{4} F \circ \gamma(t) \cdot \gamma'(t) \,\mathrm{d}t \\ &= \int_{0}^{2} \binom{t^{4}}{t^{5}} \cdot \binom{1}{2t} \,\mathrm{d}t + \int_{2}^{4} \binom{(4-t)^{2}(8-2t)}{(4-t)(8-2t)^{2}} \cdot \binom{-1}{-2} \,\mathrm{d}t \\ &= \int_{0}^{2} t^{4} + 2t^{7} \,\mathrm{d}t + \int_{2}^{4} 10(t-4)^{3} \,\mathrm{d}t \\ &= \left(\frac{1}{5}t^{5} + \frac{2}{7}t^{6}\right)_{t=0}^{2} + \left(\frac{5}{2}(t-4)^{4}\right)_{t=2}^{4} \\ &= \frac{32}{5} + \frac{256}{7} - 40 = \frac{104}{35} \end{split}$$

Solution 2

By Green's theorem,

$$\begin{aligned} \int_{\partial U} F \cdot dl &= \int_{U} \partial_{1} F_{2} - \partial_{2} F_{1} \, dA \\ &= \int_{U} y^{2} - x^{2} \, dA \\ &= \int_{0}^{2} \int_{x^{2}}^{2x} y^{2} - x^{2} \, dy \, dx \quad \text{(by Fubini's theorem)} \\ &= \int_{0}^{2} \left(\frac{1}{3}y^{3} - x^{2}y\right)_{y=x^{2}}^{2x} \, dx \\ &= \int_{0}^{2} \frac{2}{3}x^{3} - \frac{1}{3}x^{6} + x^{4} \, dx \\ &= \left(\frac{1}{6}x^{4} - \frac{1}{21}x^{7} + \frac{1}{5}x^{5}\right)_{x=0}^{2} \\ &= \frac{8}{3} - \frac{128}{21} + \frac{32}{5} = \frac{312}{105} = \frac{104}{35} \end{aligned}$$

The Insider

A common place to get confused is when you have a region bounded by two curves, one inside and one outside. The key point to remeber is that the outside curve goes counter-clockwise, but the inside curve goes clockwise.

Let Ω be the region with inside boundary Γ_1 and outside boundary Γ_2 . A way to think about it is that if we want to fill the hole, you fill in a region Γ' with Γ_1 as the outside boundary. Then

$$\int_{\Omega+\Omega'} \partial_1 F_2 - \partial_2 F_1 dA = \int_{\Gamma} F \cdot dl = \left(\int_{\Gamma} F \cdot dl - \int_{\Gamma'} F \cdot dl \right) + \left(\int_{\Gamma'} F \cdot dl \right)$$

where the line integration over Γ' is counter-clockwise and the two parenthesis corresponds to $\int_{\Omega} \partial_1 F_2 - \partial_2 F_1 dA$ and $\int_{\Omega'} \partial_1 F_2 - \partial_2 F_1 dA$.

Now we look at an example.

Example Evaluate

$$\int_{\Omega} \frac{1}{\sqrt{x^2 + y^2}} dA$$

where $\Omega = \{1 \le x^2 + y^2 \le 4\}$

Solution

Let $F = \frac{1}{\sqrt{x^2 + y^2}} \begin{pmatrix} -y \\ x \end{pmatrix}$, then

$$\partial_1 F_2 - \partial_2 F_1 = \frac{y^2}{(x^2 + y^2)^{3/2}} + \frac{x^2}{(x^2 + y^2)^{3/2}} = \frac{1}{\sqrt{x^2 + y^2}}$$

So

$$\int_{\Omega} \frac{1}{\sqrt{x^2 + y^2}} dA = \int_{\Gamma_2} F \cdot dl - \int_{\Gamma_1} F \cdot dl$$

where $\Gamma_1 = \{x^2 + y^2 = 1\}, \Gamma_2 = \{x^2 + y^2 = 4\}$ and both integrals are evaluated counterclockwise. Use the parametrization $\gamma_2(t) = (2\cos t, 2\sin t), t \in [0, 2\pi]$, we get

$$\int_{\Gamma_2} F \cdot dl = \int_0^{2\pi} \binom{-(2\sin t)/2}{(2\cos t)/2} \binom{-2\sin t}{2\cos t} dt$$
$$= \int_0^{2\pi} 2\sin^2 t + 2\cos^2 t \, dt$$
$$= \int_0^{2\pi} 2 \, dt = 4\pi$$

Similarly use the parametrization $\gamma_1(t) = (\cos t, \sin t), t \in [0, 2\pi]$, we get

$$\int_{\Gamma_1} F \cdot dl = \int_0^{2\pi} \begin{pmatrix} -(\sin t)/1 \\ (\cos t)/1 \end{pmatrix} \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} dt$$
$$= \int_0^{2\pi} \sin^2 t + \cos^2 t \, dt$$
$$= \int_0^{2\pi} 1 \, dt = 2\pi$$

 So

$$\int_{\Omega} \frac{1}{\sqrt{x^2 + y^2}} dA = 4\pi - 2\pi = 2\pi$$

We can also verify it using polar coordinate,

$$\int_{\Omega} \frac{1}{\sqrt{x^2 + y^2}} dA = \int_{0}^{2\pi} \int_{1}^{2} \frac{1}{r} r \, dr \, d\theta = 2\pi$$

Example when Green's theorem fails

Green's theorem may fail if either the region U is unbounded (example below) or F is not C^1 in U (winding number).

Example

Let $U = \{(x, y) \in \mathbb{R}^2 : y > 0\}$. Note that ∂U is the x-axis, which can be parametrized by $\gamma(t) = (t, 0)$ for $t \in \mathbb{R}$. Let $F(x, y) = (xe^{-x^2/2}, x)$. We compute

$$\int_{\partial U} F \cdot dl = \int_{-\infty}^{\infty} F \circ \gamma(t) \cdot \gamma'(t) dt$$
$$= \int_{-\infty}^{\infty} \left(\frac{te^{-t^2/2}}{t} \right) \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} dt$$
$$= \int_{-\infty}^{\infty} te^{-t^2/2} dt$$
$$= \left(-e^{-t^2/2} \right)_{t=-\infty}^{\infty}$$
$$= 0$$

and

$$\int_{U} \partial_{1} F_{2} - \partial_{2} F_{1} \, \mathrm{d}A = \int_{U} 1 \, \mathrm{d}A = \infty$$
$$\int_{\partial U} F \cdot \mathrm{d}l \neq \int_{U} \partial_{1} F_{2} - \partial_{2} F_{1} \, \mathrm{d}A$$

In this case,