The Area of an Ellipse

Green's theorem is handy to transform a hard-to-compute line integral to an easier area integral, and sometimes the other way around.

Example Consider an ellipse in \mathbb{R}^{2}, namely

$$
\Gamma:=\left\{(x, y): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right\}
$$

where $0<a, b \in \mathbb{R}$. Calculate the area of the region Ω enclosed by this curve Γ.
Solution One way to do it is a simple coordinate change we saw last time.
The other way is through Green's theorem. Recall in the Greens theorem we have

$$
\int_{\Omega} \partial_{1} F_{2}-\partial_{2} F_{1} d A=\int_{\Gamma} F \cdot d l
$$

So to calculate

$$
\operatorname{Area}(\Omega)=\int_{\Omega} 1 d A
$$

We want to use some F such that $\partial_{1} F_{2}-\partial_{2} F_{1}=1$. There are many choices of F that is valid, but they may lead to different level of difficulty on evaluating the line integral.

Let's first parameterize Γ. Similar to a circle, which is a special case of the an ellipse, we can use $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ defined via

$$
\gamma(t)=(a \cos t, b \sin t)
$$

Then if we choose $F=(0, x)$, the line integral becomes

$$
\int_{\Gamma}\binom{0}{x} \cdot d l=\int_{0}^{2 \pi}\binom{0}{a \cos t} \cdot\binom{-a \sin t}{b \cos t} d t=a b \int_{0}^{2 \pi} \cos ^{2} t d t
$$

We can also choose $F=(-y / 2, x / 2)$, than the line integral becomes

$$
\frac{1}{2} \int_{\Gamma}\binom{-y}{x} \cdot d l=\frac{1}{2} \int_{0}^{2 \pi}\binom{-b \sin t}{a \cos t} \cdot\binom{-a \sin t}{b \cos t} d t=\frac{1}{2} \int_{0}^{2 \pi} a b d t=\pi a b
$$

(It's not difficult to calculate integration of $\cos ^{2} t$, but this choice of F makes it even easier)

Another example of Green's theorem

Let U be the region bounded by the functions $y=2 x$ and $y=x^{2}$ in the first quadrant, and let $F(x, y)=\left(x^{2} y, x y^{2}\right)$. Compute $\int_{\partial U} F \cdot \mathrm{~d} l$ both directly and using Green's theorem.

Solution 1

Let $\gamma:[0,4] \rightarrow \partial U$ be defined as

$$
\gamma(t)= \begin{cases}\left(t, t^{2}\right) & \text { if } t \in[0,2] \\ (4-t, 8-2 t) & \text { if } t \in(2,4]\end{cases}
$$

Note that γ is a parametrization of ∂U. Thus,

$$
\begin{aligned}
\int_{\partial U} F \cdot \mathrm{~d} l & =\int_{0}^{4} F \circ \gamma(t) \cdot \gamma^{\prime}(t) \mathrm{d} t \\
& =\int_{0}^{2}\binom{t^{4}}{t^{5}} \cdot\binom{1}{2 t} \mathrm{~d} t+\int_{2}^{4}\binom{(4-t)^{2}(8-2 t)}{(4-t)(8-2 t)^{2}} \cdot\binom{-1}{-2} \mathrm{~d} t \\
& =\int_{0}^{2} t^{4}+2 t^{7} \mathrm{~d} t+\int_{2}^{4} 10(t-4)^{3} \mathrm{~d} t \\
& =\left(\frac{1}{5} t^{5}+\frac{2}{7} t^{6}\right)_{t=0}^{2}+\left(\frac{5}{2}(t-4)^{4}\right)_{t=2}^{4} \\
& =\frac{32}{5}+\frac{256}{7}-40=\frac{104}{35}
\end{aligned}
$$

Solution 2

By Green's theorem,

$$
\begin{aligned}
\int_{\partial U} F \cdot \mathrm{~d} l & =\int_{U} \partial_{1} F_{2}-\partial_{2} F_{1} \mathrm{~d} A \\
& =\int_{U} y^{2}-x^{2} \mathrm{~d} A \\
& =\int_{0}^{2} \int_{x^{2}}^{2 x} y^{2}-x^{2} \mathrm{~d} y \mathrm{~d} x \quad \text { (by Fubini's theorem) } \\
& =\int_{0}^{2}\left(\frac{1}{3} y^{3}-x^{2} y\right)_{y=x^{2}}^{2 x} \mathrm{~d} x \\
& =\int_{0}^{2} \frac{2}{3} x^{3}-\frac{1}{3} x^{6}+x^{4} \mathrm{~d} x \\
& =\left(\frac{1}{6} x^{4}-\frac{1}{21} x^{7}+\frac{1}{5} x^{5}\right)_{x=0}^{2} \\
& =\frac{8}{3}-\frac{128}{21}+\frac{32}{5}=\frac{312}{105}=\frac{104}{35}
\end{aligned}
$$

The Insider

A common place to get confused is when you have a region bounded by two curves, one inside and one outside. The key point to remeber is that the outside curve goes counter-clockwise, but the inside curve goes clockwise.

Let Ω be the region with inside boundary Γ_{1} and outside boundary Γ_{2}. A way to think about it is that if we want to fill the hole, you fill in a region Γ^{\prime} with Γ_{1} as the outside boundary. Then

$$
\int_{\Omega+\Omega^{\prime}} \partial_{1} F_{2}-\partial_{2} F_{1} d A=\int_{\Gamma} F \cdot d l=\left(\int_{\Gamma} F \cdot d l-\int_{\Gamma^{\prime}} F \cdot d l\right)+\left(\int_{\Gamma^{\prime}} F \cdot d l\right)
$$

where the line integration over Γ^{\prime} is counter-clockwise and the two parenthesis corresponds to $\int_{\Omega} \partial_{1} F_{2}-\partial_{2} F_{1} d A$ and $\int_{\Omega^{\prime}} \partial_{1} F_{2}-\partial_{2} F_{1} d A$.

Now we look at an example.
Example Evaluate

$$
\int_{\Omega} \frac{1}{\sqrt{x^{2}+y^{2}}} d A
$$

where $\Omega=\left\{1 \leq x^{2}+y^{2} \leq 4\right\}$

Solution

Let $F=\frac{1}{\sqrt{x^{2}+y^{2}}}\binom{-y}{x}$, then

$$
\partial_{1} F_{2}-\partial_{2} F_{1}=\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{x^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\frac{1}{\sqrt{x^{2}+y^{2}}}
$$

So

$$
\int_{\Omega} \frac{1}{\sqrt{x^{2}+y^{2}}} d A=\int_{\Gamma_{2}} F \cdot d l-\int_{\Gamma_{1}} F \cdot d l
$$

where $\Gamma_{1}=\left\{x^{2}+y^{2}=1\right\}, \Gamma_{2}=\left\{x^{2}+y^{2}=4\right\}$ and both integrals are evaluated counterclockwise. Use the parametrization $\gamma_{2}(t)=(2 \cos t, 2 \sin t), t \in[0,2 \pi]$, we get

$$
\begin{aligned}
\int_{\Gamma_{2}} F \cdot d l & =\int_{0}^{2 \pi}\binom{-(2 \sin t) / 2}{(2 \cos t) / 2}\binom{-2 \sin t}{2 \cos t} d t \\
& =\int_{0}^{2 \pi} 2 \sin ^{2} t+2 \cos ^{2} t d t \\
& =\int_{0}^{2 \pi} 2 d t=4 \pi
\end{aligned}
$$

Similarly use the parametrization $\gamma_{1}(t)=(\cos t, \sin t), t \in[0,2 \pi]$, we get

$$
\begin{aligned}
\int_{\Gamma_{1}} F \cdot d l & =\int_{0}^{2 \pi}\binom{-(\sin t) / 1}{(\cos t) / 1}\binom{-\sin t}{\cos t} d t \\
& =\int_{0}^{2 \pi} \sin ^{2} t+\cos ^{2} t d t \\
& =\int_{0}^{2 \pi} 1 d t=2 \pi
\end{aligned}
$$

So

$$
\int_{\Omega} \frac{1}{\sqrt{x^{2}+y^{2}}} d A=4 \pi-2 \pi=2 \pi
$$

We can also verify it using polar coordinate,

$$
\int_{\Omega} \frac{1}{\sqrt{x^{2}+y^{2}}} d A=\int_{0}^{2 \pi} \int_{1}^{2} \frac{1}{r} r d r d \theta=2 \pi
$$

Example when Green's theorem fails

Green's theorem may fail if either the region U is unbounded (example below) or F is not C^{1} in U (winding number).

Example

Let $U=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$. Note that ∂U is the x-axis, which can be parametrized by $\gamma(t)=(t, 0)$ for $t \in \mathbb{R}$. Let $F(x, y)=\left(x e^{-x^{2} / 2}, x\right)$. We compute

$$
\begin{aligned}
\int_{\partial U} F \cdot \mathrm{~d} l & =\int_{-\infty}^{\infty} F \circ \gamma(t) \cdot \gamma^{\prime}(t) \mathrm{d} t \\
& =\int_{-\infty}^{\infty}\binom{t e^{-t^{2} / 2}}{t} \cdot\binom{1}{0} \mathrm{~d} t \\
& =\int_{-\infty}^{\infty} t e^{-t^{2} / 2} \mathrm{~d} t \\
& =\left(-e^{-t^{2} / 2}\right)_{t=-\infty}^{\infty} \\
& =0
\end{aligned}
$$

and

$$
\int_{U} \partial_{1} F_{2}-\partial_{2} F_{1} \mathrm{~d} A=\int_{U} 1 \mathrm{~d} A=\infty
$$

In this case,

$$
\int_{\partial U} F \cdot \mathrm{~d} l \neq \int_{U} \partial_{1} F_{2}-\partial_{2} F_{1} \mathrm{~d} A
$$

