
21-268: Multidimensional Calculus Spring 2020

Recitation April 7

Example of Coordinate Change

Recall the change of variables:

Suppose U, V ⊂ R3, and ϕ : U → V is C1 and bijective. Then,∫
V

f(x) dx =

∫
U

(f ◦ ϕ)(y) · |det(Dϕy)| dy

Problem

Compute the volume of the ellipsoid V = {(x, y, z) ∈ R3 : x2

a2
+ y2

b2
+ z2

c2
≤ 1}.

Solution Define ψ : U → V as ψ : (ρ, θ, ϕ) 7→ (aρ cos θ sinϕ, bρ sin θ sinϕ, cρ cosϕ), where
ρ ∈ [0, 1], θ ∈ [0, 2π], ϕ ∈ [0, π], and so U = {(ρ, θ, ϕ) : ρ ∈ [0, 1], θ ∈ [0, 2π], ϕ ∈ [0, π]}.
Note that ψ is C1 and bijective. We compute

det(Dψ) =

∣∣∣∣∣∣
a cos θ sinϕ −aρ sin θ sinϕ aρ cos θ cosϕ
b sin θ sinϕ bρ cos θ sinϕ bρ sin θ cosϕ
c cosϕ 0 −cρ sinϕ

∣∣∣∣∣∣
= c cosϕ(−abρ2 sin2 θ sinϕ cosϕ− abρ2 cos2 θ sinϕ cosϕ)

− cρ sinϕ(abρ cos2 θ sin2 ϕ+ abρ sin2 θ sin2 ϕ)

= abcρ2(− sin2 θ sinϕ cos2 ϕ− cos2 θ sinϕ cos2 ϕ− cos2 θ sin3 ϕ− sin2 θ sin3 ϕ)

= abcρ2(− sinϕ cos2 ϕ− sin3 ϕ)

= −abcρ2 sinϕ

Thus, we can compute the volume∫
V

1 dx dy dz =

∫
U

1 · | det(Dψ)| dρ dθ dϕ

=

∫ π

0

∫ 2π

0

∫ 1

0

abcρ2 sinϕ dρ dθ dϕ

= abc

∫ π

0

∫ 2π

0

1

3
sinϕ dθ dϕ

= abc

∫ π

0

2π

3
sinϕ dϕ

=
2π

3
abc · (− cosϕ)πϕ=0 =

4π

3
abc

1



2

Example of a Line Integral

Recall how we compute a line integral using its parametrization:

Let γ : [0, 1]→ Rd be a parametrization of the curve Γ,∫
Γ

F · dl =

∫ 1

0

(F ◦ γ)(t) · γ′(t)dt

Now we look at the following example in R3:

Problem

Compute ∫
Γ

yzdx+ xzdy + xydz =

∫
Γ

yzxz
xy

 · dl
along the curve

Γ = {(t, t2, t3)|t ∈ [0, 1]}

Solution Here we are given an parametrization γ : [0, 1]→ R3 via

γ(t) = (t, t2, t3)

Plug in the formula with γ and γ′(t) = (1, 2t, 3t2) we get

∫
Γ

yzxz
xy

 · dl =

∫ 1

0

t5t4
t3

 ·
 1

2t
3t2

 dt

=

∫ 1

0

6t5dt

= t6|1t=0 = 1

Parametrization Invariance of Line Integrals

Proposition 1 Let γ : [0, 1]→ Rd and δ : [0, 1]→ Rd be two parametrizations of the curve
Γ. Suppose that there exists a C1 bijective function ϕ : [0, 1] → [0, 1] such that ϕ(0) = 0,
ϕ(1) = 1, and δ = γ ◦ ϕ. Then,∫ 1

0

(F ◦ δ)(t) · δ′(t) dt =

∫ 1

0

(F ◦ γ)(s) · γ′(s) ds
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Proof: By computation,∫ 1

0

(F ◦ δ)(t) · δ′(t) dt =

∫ 1

0

(F ◦ (γ ◦ ϕ))(t) · (γ ◦ ϕ)′(t) dt

=

∫ 1

0

((F ◦ γ) ◦ ϕ)(t) · γ′(ϕ(t)) · ϕ′(t) dt (by chain rule)

=

∫ 1

0

(F ◦ γ)(ϕ(t)) · γ′(ϕ(t)) · ϕ′(t) dt

=

∫ 1

0

(F ◦ γ)(s) · γ′(s) ds (by change of variable s = ϕ(t))

Line Integral w.r.t Arc Length

In usual integral we integrate a scalar-valued function in a domain. In line integral since we
are integrating things in a curve instead of an open set in Rd, we integrate the dot product
with a vector field.

However recall that a parameterized curve can be view as a 1-dimensional object just like
[0, 1] ⊂ R, one might want to develop some form of line integral similar to the integration in
R. We will see how through the following example.

Problem

Calculate the perimeter of a unit half circle Γ using line integral

Solution

Let γ : [0, 1] → R2 be the parametrization of Γ via γ(t) = (cos(πt), sin(πt)) This problem
is the same as asking “integral 1 over the half circle”. In an usual integral with vector field
F over a curve with parameterization γ, we are summing up small parts of F · γ′. Here we
want to sum up small part that represent the length, i.e. |γ′|. We want to have an F such
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that (F ◦ γ) · γ′ = γ′, so we find some F such that F ◦ γ =
γ′

|γ′|
. Then the integral becomes

∫
Γ

F · dl =

∫ 1

0

(F ◦ γ)(t) · γ′(t)dt

=

∫ 1

0

γ′(t)

|γ′(t)|
· γ′(t)dt

=

∫ 1

0

|γ′(t)|dt

=

∫ 1

0

√
(−π sin(πt))2 + (π cos(πt))2dt

=

∫ 1

0

πdt

= π

as expected.

In general for any scalar valued function f : Γ→ R, curve Γ with parametrization γ : [0, 1]→
Γ, we write the integration of f with respect to the arc length as∫

Γ

fds =

∫ 1

0

(f ◦ γ)(t)|γ′(t)|dt

In particular when f = 1, we get the arc length of Γ.


