Recitation April 7

Example of Coordinate Change

Recall the change of variables:
Suppose $U, V \subset \mathbb{R}^{3}$, and $\varphi: U \rightarrow V$ is C^{1} and bijective. Then,

$$
\int_{V} f(x) \mathrm{d} x=\int_{U}(f \circ \varphi)(y) \cdot\left|\operatorname{det}\left(D \varphi_{y}\right)\right| \mathrm{d} y
$$

Problem

Compute the volume of the ellipsoid $V=\left\{(x, y, z) \in \mathbb{R}^{3}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1\right\}$.
Solution Define $\psi: U \rightarrow V$ as $\psi:(\rho, \theta, \varphi) \mapsto(a \rho \cos \theta \sin \varphi, b \rho \sin \theta \sin \varphi, c \rho \cos \varphi)$, where $\rho \in[0,1], \theta \in[0,2 \pi], \varphi \in[0, \pi]$, and so $U=\{(\rho, \theta, \varphi): \rho \in[0,1], \theta \in[0,2 \pi], \varphi \in[0, \pi]\}$. Note that ψ is C^{1} and bijective. We compute

$$
\begin{aligned}
\operatorname{det}(D \psi)= & \left|\begin{array}{ccc}
a \cos \theta \sin \varphi & -a \rho \sin \theta \sin \varphi & a \rho \cos \theta \cos \varphi \\
b \sin \theta \sin \varphi & b \rho \cos \theta \sin \varphi & b \rho \sin \theta \cos \varphi \\
c \cos \varphi & 0 & -c \rho \sin \varphi
\end{array}\right| \\
= & c \cos \varphi\left(-a b \rho^{2} \sin ^{2} \theta \sin \varphi \cos \varphi-a b \rho^{2} \cos ^{2} \theta \sin \varphi \cos \varphi\right) \\
& -c \rho \sin \varphi\left(a b \rho \cos ^{2} \theta \sin ^{2} \varphi+a b \rho \sin ^{2} \theta \sin ^{2} \varphi\right) \\
= & a b c \rho^{2}\left(-\sin ^{2} \theta \sin \varphi \cos ^{2} \varphi-\cos ^{2} \theta \sin \varphi \cos ^{2} \varphi-\cos ^{2} \theta \sin ^{3} \varphi-\sin ^{2} \theta \sin ^{3} \varphi\right) \\
= & a b c \rho^{2}\left(-\sin \varphi \cos ^{2} \varphi-\sin ^{3} \varphi\right) \\
= & -a b c \rho^{2} \sin \varphi
\end{aligned}
$$

Thus, we can compute the volume

$$
\begin{aligned}
\int_{V} 1 \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z & =\int_{U} 1 \cdot|\operatorname{det}(D \psi)| \mathrm{d} \rho \mathrm{~d} \theta \mathrm{~d} \varphi \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{1} a b c \rho^{2} \sin \varphi \mathrm{~d} \rho \mathrm{~d} \theta \mathrm{~d} \varphi \\
& =a b c \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{1}{3} \sin \varphi \mathrm{~d} \theta \mathrm{~d} \varphi \\
& =a b c \int_{0}^{\pi} \frac{2 \pi}{3} \sin \varphi \mathrm{~d} \varphi \\
& =\frac{2 \pi}{3} a b c \cdot(-\cos \varphi)_{\varphi=0}^{\pi}=\frac{4 \pi}{3} a b c
\end{aligned}
$$

Example of a Line Integral

Recall how we compute a line integral using its parametrization:
Let $\gamma:[0,1] \rightarrow \mathbb{R}^{d}$ be a parametrization of the curve Γ,

$$
\int_{\Gamma} F \cdot d l=\int_{0}^{1}(F \circ \gamma)(t) \cdot \gamma^{\prime}(t) d t
$$

Now we look at the following example in \mathbb{R}^{3} :

Problem

Compute

$$
\int_{\Gamma} y z d x+x z d y+x y d z=\int_{\Gamma}\left(\begin{array}{l}
y z \\
x z \\
x y
\end{array}\right) \cdot d l
$$

along the curve

$$
\Gamma=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in[0,1]\right\}
$$

Solution Here we are given an parametrization $\gamma:[0,1] \rightarrow \mathbb{R}^{3}$ via

$$
\gamma(t)=\left(t, t^{2}, t^{3}\right)
$$

Plug in the formula with γ and $\gamma^{\prime}(t)=\left(1,2 t, 3 t^{2}\right)$ we get

$$
\begin{aligned}
\int_{\Gamma}\left(\begin{array}{l}
y z \\
x z \\
x y
\end{array}\right) \cdot d l & =\int_{0}^{1}\left(\begin{array}{l}
t^{5} \\
t^{4} \\
t^{3}
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
2 t \\
3 t^{2}
\end{array}\right) d t \\
& =\int_{0}^{1} 6 t^{5} d t \\
& =\left.t^{6}\right|_{t=0} ^{1}=1
\end{aligned}
$$

Parametrization Invariance of Line Integrals

Proposition 1 Let $\gamma:[0,1] \rightarrow \mathbb{R}^{d}$ and $\delta:[0,1] \rightarrow \mathbb{R}^{d}$ be two parametrizations of the curve Γ. Suppose that there exists a C^{1} bijective function $\varphi:[0,1] \rightarrow[0,1]$ such that $\varphi(0)=0$, $\varphi(1)=1$, and $\delta=\gamma \circ \varphi$. Then,

$$
\int_{0}^{1}(F \circ \delta)(t) \cdot \delta^{\prime}(t) \mathrm{d} t=\int_{0}^{1}(F \circ \gamma)(s) \cdot \gamma^{\prime}(s) \mathrm{d} s
$$

Proof: By computation,

$$
\begin{aligned}
\int_{0}^{1}(F \circ \delta)(t) \cdot \delta^{\prime}(t) \mathrm{d} t & =\int_{0}^{1}(F \circ(\gamma \circ \varphi))(t) \cdot(\gamma \circ \varphi)^{\prime}(t) \mathrm{d} t \\
& =\int_{0}^{1}((F \circ \gamma) \circ \varphi)(t) \cdot \gamma^{\prime}(\varphi(t)) \cdot \varphi^{\prime}(t) \mathrm{d} t \quad \text { (by chain rule) } \\
& =\int_{0}^{1}(F \circ \gamma)(\varphi(t)) \cdot \gamma^{\prime}(\varphi(t)) \cdot \varphi^{\prime}(t) \mathrm{d} t \\
& \left.=\int_{0}^{1}(F \circ \gamma)(s) \cdot \gamma^{\prime}(s) \mathrm{d} s \quad \quad \text { by change of variable } s=\varphi(t)\right)
\end{aligned}
$$

Line Integral w.r.t Arc Length

In usual integral we integrate a scalar-valued function in a domain. In line integral since we are integrating things in a curve instead of an open set in \mathbb{R}^{d}, we integrate the dot product with a vector field.

However recall that a parameterized curve can be view as a 1-dimensional object just like $[0,1] \subset \mathbb{R}$, one might want to develop some form of line integral similar to the integration in \mathbb{R}. We will see how through the following example.

Problem

Calculate the perimeter of a unit half circle Γ using line integral

Solution

Let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ be the parametrization of Γ via $\gamma(t)=(\cos (\pi t), \sin (\pi t))$ This problem is the same as asking "integral 1 over the half circle". In an usual integral with vector field F over a curve with parameterization γ, we are summing up small parts of $F \cdot \gamma^{\prime}$. Here we want to sum up small part that represent the length, i.e. $\left|\gamma^{\prime}\right|$. We want to have an F such
that $(F \circ \gamma) \cdot \gamma^{\prime}=\gamma^{\prime}$, so we find some F such that $F \circ \gamma=\frac{\gamma^{\prime}}{\left|\gamma^{\prime}\right|}$. Then the integral becomes

$$
\begin{aligned}
\int_{\Gamma} F \cdot d l & =\int_{0}^{1}(F \circ \gamma)(t) \cdot \gamma^{\prime}(t) d t \\
& =\int_{0}^{1} \frac{\gamma^{\prime}(t)}{\left|\gamma^{\prime}(t)\right|} \cdot \gamma^{\prime}(t) d t \\
& =\int_{0}^{1}\left|\gamma^{\prime}(t)\right| d t \\
& =\int_{0}^{1} \sqrt{(-\pi \sin (\pi t))^{2}+(\pi \cos (\pi t))^{2}} d t \\
& =\int_{0}^{1} \pi d t \\
& =\pi
\end{aligned}
$$

as expected.
In general for any scalar valued function $f: \Gamma \rightarrow \mathbb{R}$, curve Γ with parametrization $\gamma:[0,1] \rightarrow$ Γ, we write the integration of f with respect to the arc length as

$$
\int_{\Gamma} f d s=\int_{0}^{1}(f \circ \gamma)(t)\left|\gamma^{\prime}(t)\right| d t
$$

In particular when $f=1$, we get the arc length of Γ.

