21-268: Multidimensional Calculus

Tomorrow we have some very specific event...
Problem Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined via $g(x)=f\left(x, x^{2}\right)$ where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function. Prove that g is differentiable and $g^{\prime}(a)=\partial_{1} f\left(a, a^{2}\right)+2 a \partial_{2} f\left(a, a^{2}\right)$ for any $a \in \mathbb{R}$ (Of course, you cannot use the chain rule to prove this statement)

Solution This is a special (and very simplified) case of the multidimensional chain rule $D(f \circ g)_{a}=D f_{g(a)} D g_{a}$.

Let $a \in \mathbb{R}$, by definition of the derivative,

$$
\lim _{\left(h_{1}, h_{2}\right) \rightarrow(0,0)} \frac{\left|f\left(a+h_{1}, a^{2}+h_{2}\right)-f\left(a, a^{2}\right)-\partial_{1} f\left(a, a^{2}\right) h_{1}-\partial_{2} f\left(a, a^{2}\right) h_{2}\right|}{\left|\left(h_{1}, h_{2}\right)\right|}=0
$$

Substitute in $h_{2}=2 a h_{1}+h_{1}^{2}$ (it is a continuous function with respect to h_{1} !) we get

$$
\lim _{h \rightarrow 0} \frac{\left|f\left(a+h,(a+h)^{2}\right)-f\left(a, a^{2}\right)-\partial_{1} f\left(a, a^{2}\right) h-\partial_{2} f\left(a, a^{2}\right)\left(2 a h+h^{2}\right)\right|}{\left|\left(h, 2 a h+h^{2}\right)\right|}=0
$$

$\left|\left(h, 2 a h+h^{2}\right)\right| \leq(2|a|+2) h$ when $h<1$, so

$$
\lim _{h \rightarrow 0} \frac{\left|f\left(a+h,(a+h)^{2}\right)-f\left(a, a^{2}\right)-\partial_{1} f\left(a, a^{2}\right) h-\partial_{2} f\left(a, a^{2}\right)\left(2 a h+h^{2}\right)\right|}{(2|a|+2)|h|}=0
$$

$\lim _{h \rightarrow 0} \partial_{2} f h^{2} /|h|=0$ so add it in and multiply by $2|a|+2$ we get

$$
\lim _{h \rightarrow 0} \frac{\left|f\left(a+h,(a+h)^{2}\right)-f\left(a, a^{2}\right)-\left(\partial_{1} f\left(a, a^{2}\right)+2 a \partial_{2} f\left(a, a^{2}\right)\right) h\right|}{|h|}=0
$$

which by definition means $g^{\prime}(a)=\partial_{1} f\left(a, a^{2}\right)+2 a \partial_{2} f\left(a, a^{2}\right)$

Problem

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function in C^{2}. Assume for a point $a \in \mathbb{R}, D f_{a}=0$ and $H f_{a}=-I$. Prove that f achieves a local maximum at a.

Solution

This is simplified case of the theorem we have for general negative definite $H f_{a}$.
By Taylor's theroem we know

$$
f(x)=f(a)+D f_{a}(x-a)+\frac{1}{2}(x-a)^{T} H f_{a}(x-a)+R_{2}(x-a)
$$

for some function $R_{2}(x-a)$ and $\lim _{x \rightarrow a} \frac{R_{2}(x-a)}{|x-a|^{2}}=0$. Substitute in $D f_{a}=0, H f_{a}=-I$ we get

$$
f(x)=f(a)-\frac{1}{2}|x-a|^{2}+R_{2}(x-a)
$$

Since $\lim _{x \rightarrow a} \frac{R_{2}(x-a)}{|x-a|^{2}}=0$,

$$
\exists r>0,|x-a|<r \Rightarrow \frac{\left|R_{2}(x-a)\right|}{|x-a|^{2}}<1 / 2 \Rightarrow\left|R_{2}(x-a)\right|<\frac{1}{2}|x-a|^{2}
$$

Then for all $x \in B(a, r)$

$$
f(x)=f(a)-\frac{1}{2}|x-a|^{2}+R_{2}(x-a)<=f(a)
$$

So f attains a local maximum at a.

Problem

Let $f(x, y)=A x^{2}+2 B x y+C y^{2}+2 D x+2 E y+F$ where A, B, C, D, E, F are real numebrs. Assume $A>0$ and $B^{2}<A C$. Prove that $f(x, y)$ has a local minimum.

Solution

First compute

$$
\begin{gathered}
D f_{(x, y)}=[2 A x+2 B y+2 D \quad 2 C y+2 B x+2 E]=2\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+2\left[\begin{array}{l}
D \\
E
\end{array}\right] \\
H f_{(x, y)}=2\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]
\end{gathered}
$$

Since $A>0$ and $A C-B^{2}>0$, recall Sylvester's law of signs, $H f$ is positive definite. Also $\left[\begin{array}{ll}A & B \\ B & C\end{array}\right]$ is invertible so $D f_{\left(x_{1}, y_{1}\right)}=0$ when

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=-\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]^{-1}\left[\begin{array}{l}
D \\
E
\end{array}\right]
$$

So we can find a point $a=\left(x_{1}, y_{1}\right)$ such that $D f_{a}=0$ and $H f_{a}$ is positive definite, thus it is a local minimum.

Problem

Show that there exists an open set $U \subseteq \mathbb{R}$ and two C^{1} functions $f, g: U \rightarrow \mathbb{R}$ such that for all $x \in U$,

$$
1 \in U, \quad f(1)=1, \quad g(1)=0, \quad \text { and } \quad\left\{\begin{array}{l}
e^{x f(x) g(x)}+x f(x) g(x)=1 \\
x f(x)^{3} g(x)+f(x)=1
\end{array} \quad \text { for all } x \in U\right.
$$

Solution Consider the function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ which is defined as

$$
F(x, y, z)=\binom{F_{1}(x, y, z)}{F_{2}(x, y, z)}=\binom{e^{x y z}+x y z}{x y^{3} z+y}
$$

Note that $F(1,1,0)=(1,1)$, and

$$
D F_{(x, y, z)}=\left[\begin{array}{ccc}
y z e^{x y z}+y z & x z e^{x y z}+x z & x y e^{x y z}+x y \\
y^{3} z & 3 x y^{2} z+1 & x y^{3}
\end{array}\right], \quad D F_{(1,1,0)}=\left[\begin{array}{ccc}
0 & 0 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

Since $\operatorname{det}\left[\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right] \neq 0$, by implicit function theorem, there exists an open set $U \subseteq \mathbb{R}$ and a C^{1} function $h: U \rightarrow \mathbb{R}^{2}$ such that

$$
h(1)=(1,0), \quad \text { and } \quad F(x, h(x))=(1,1) \text { for all } x \in U
$$

We can then let $f=h_{1}$ and $g=h_{2}$ so we can get the desired result.

Problem

In the region $x, y, z \geq 0$, maximize $x y z^{2}$ subject to the constraint $x+y+z=C$ for some $C>0$.

Solution

The constraint $x+y+z=C$ infers that $(x, y, z) \in[0, C]^{3}$, which is a bounded set. This means that the constraint global maximum of $x y z^{2}$ either occurs as a constraint local maximum in the interior $(0, C)^{3}$, or occurs on the boundary of $[0, C]^{3}$.

Let $f(x, y, z)=x y z^{2}$ and $g(x, y, z)=x+y+z$ for $x, y, z \geq 0$. We first check the interior region $(x, y, z) \in(0, C)^{3}$. By solving $g=C$ and $\nabla f=\lambda \nabla g$ simultaneously, we get

$$
x+y+z=C, \quad\left(\begin{array}{c}
y z^{2} \\
x z^{2} \\
2 x y z
\end{array}\right)=\lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

This leads to $x=y=\frac{C}{4}$ and $z=\frac{C}{2}$. Thus, there is only one candidate in the interior: $f\left(\frac{C}{4}, \frac{C}{4}, \frac{C}{2}\right)=\frac{C^{4}}{64}$.

We then check the boundary, i.e., one of x, y, z is 0 or C. If $x=0$, then $f(x, y, z)=0<\frac{C^{4}}{64}$. If $x=C$, then since $x+y+z=C$ and $x, y, z \geq 0$, we must have $y=z=0$, so that $f(x, y, z)=0<\frac{C^{4}}{64}$. The same thing happens if $y=0$ or $y=C$ or $z=0$ or $z=C$.
Therefore, the maximum of $x y z^{2}$ subject to the constraint $x+y+z=C$ is $\frac{C^{4}}{64}$.

