21-268: Multidimensional Calculus

Recitation March 24

Tomorrow we have some very specific event...

Problem Let $g : \mathbb{R} \to \mathbb{R}$ be defined via $g(x) = f(x, x^2)$ where $f : \mathbb{R}^2 \to \mathbb{R}$ is a differentiable function. Prove that g is differentiable and $g'(a) = \partial_1 f(a, a^2) + 2a\partial_2 f(a, a^2)$ for any $a \in \mathbb{R}$ (Of course, you cannot use the chain rule to prove this statement)

Solution This is a special (and very simplified) case of the multidimensional chain rule $D(f \circ g)_a = Df_{g(a)}Dg_a$.

Let $a \in \mathbb{R}$, by definition of the derivative,

$$\lim_{(h_1,h_2)\to(0,0)} \frac{|f(a+h_1,a^2+h_2) - f(a,a^2) - \partial_1 f(a,a^2)h_1 - \partial_2 f(a,a^2)h_2|}{|(h_1,h_2)|} = 0$$

Substitute in $h_2 = 2ah_1 + h_1^2$ (it is a continuous function with respect to $h_1!$) we get

$$\lim_{h \to 0} \frac{|f(a+h, (a+h)^2) - f(a, a^2) - \partial_1 f(a, a^2)h - \partial_2 f(a, a^2)(2ah + h^2)|}{|(h, 2ah + h^2)|} = 0$$

 $|(h, 2ah + h^2)| \le (2|a| + 2)h$ when h < 1, so

$$\lim_{h \to 0} \frac{|f(a+h, (a+h)^2) - f(a, a^2) - \partial_1 f(a, a^2)h - \partial_2 f(a, a^2)(2ah + h^2)|}{(2|a|+2)|h|} = 0$$

 $\lim_{h\to 0} \partial_2 f h^2/|h| = 0$ so add it in and multiply by 2|a| + 2 we get

$$\lim_{h \to 0} \frac{|f(a+h, (a+h)^2) - f(a, a^2) - (\partial_1 f(a, a^2) + 2a\partial_2 f(a, a^2))h|}{|h|} = 0$$

which by definition means $g'(a) = \partial_1 f(a, a^2) + 2a \partial_2 f(a, a^2)$

Let $f : \mathbb{R}^d \to \mathbb{R}$ be a function in C^2 . Assume for a point $a \in \mathbb{R}$, $Df_a = 0$ and $Hf_a = -I$. Prove that f achieves a local maximum at a.

Solution

This is simplified case of the theorem we have for general negative definite Hf_a .

By Taylor's theroem we know

$$f(x) = f(a) + Df_a(x-a) + \frac{1}{2}(x-a)^T H f_a(x-a) + R_2(x-a)$$

for some function $R_2(x-a)$ and $\lim_{x\to a} \frac{R_2(x-a)}{|x-a|^2} = 0$. Substitute in $Df_a = 0, Hf_a = -I$ we get

$$f(x) = f(a) - \frac{1}{2}|x - a|^2 + R_2(x - a)$$

Since $\lim_{x \to a} \frac{R_2(x-a)}{|x-a|^2} = 0$,

$$\exists r > 0, |x - a| < r \Rightarrow \frac{|R_2(x - a)|}{|x - a|^2} < 1/2 \Rightarrow |R_2(x - a)| < \frac{1}{2}|x - a|^2$$

Then for all $x \in B(a, r)$

$$f(x) = f(a) - \frac{1}{2}|x - a|^2 + R_2(x - a) \le f(a)$$

So f attains a local maximum at a.

Let $f(x,y) = Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F$ where A, B, C, D, E, F are real numebrs. Assume A > 0 and $B^2 < AC$. Prove that f(x, y) has a local minimum.

Solution

First compute

$$Df_{(x,y)} = \begin{bmatrix} 2Ax + 2By + 2D & 2Cy + 2Bx + 2E \end{bmatrix} = 2 \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + 2 \begin{bmatrix} D \\ E \end{bmatrix}$$
$$Hf_{(x,y)} = 2 \begin{bmatrix} A & B \\ B & C \end{bmatrix}$$

Since A > 0 and $AC - B^2 > 0$, recall Sylvester's law of signs, Hf is positive definite. Also $\begin{bmatrix} A & B \\ B & C \end{bmatrix}$ is invertible so $Df_{(x_1,y_1)} = 0$ when

$$\begin{bmatrix} x \\ y \end{bmatrix} = - \begin{bmatrix} A & B \\ B & C \end{bmatrix}^{-1} \begin{bmatrix} D \\ E \end{bmatrix}$$

So we can find a point $a = (x_1, y_1)$ such that $Df_a = 0$ and Hf_a is positive definite, thus it is a local minimum.

Show that there exists an open set $U \subseteq \mathbb{R}$ and two C^1 functions $f, g: U \to \mathbb{R}$ such that for all $x \in U$,

$$1 \in U, \quad f(1) = 1, \quad g(1) = 0, \quad \text{and} \quad \begin{cases} e^{xf(x)g(x)} + xf(x)g(x) = 1\\ xf(x)^3g(x) + f(x) = 1 \end{cases} \quad \text{for all } x \in U \end{cases}$$

Solution Consider the function $F : \mathbb{R}^3 \to \mathbb{R}^2$ which is defined as

$$F(x, y, z) = \begin{pmatrix} F_1(x, y, z) \\ F_2(x, y, z) \end{pmatrix} = \begin{pmatrix} e^{xyz} + xyz \\ xy^3z + y \end{pmatrix}$$

Note that F(1, 1, 0) = (1, 1), and

$$DF_{(x,y,z)} = \begin{bmatrix} yze^{xyz} + yz & xze^{xyz} + xz & xye^{xyz} + xy \\ y^3z & 3xy^2z + 1 & xy^3 \end{bmatrix}, \quad DF_{(1,1,0)} = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$

Since det $\begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix} \neq 0$, by implicit function theorem, there exists an open set $U \subseteq \mathbb{R}$ and a C^1 function $h: U \to \mathbb{R}^2$ such that

$$h(1) = (1,0), \text{ and } F(x,h(x)) = (1,1) \text{ for all } x \in U$$

We can then let $f = h_1$ and $g = h_2$ so we can get the desired result.

In the region $x, y, z \ge 0$, maximize xyz^2 subject to the constraint x + y + z = C for some C > 0.

Solution

The constraint x+y+z = C infers that $(x, y, z) \in [0, C]^3$, which is a bounded set. This means that the constraint global maximum of xyz^2 either occurs as a constraint local maximum in the interior $(0, C)^3$, or occurs on the boundary of $[0, C]^3$.

Let $f(x, y, z) = xyz^2$ and g(x, y, z) = x + y + z for $x, y, z \ge 0$. We first check the interior region $(x, y, z) \in (0, C)^3$. By solving g = C and $\nabla f = \lambda \nabla g$ simultaneously, we get

$$x + y + z = C,$$
 $\begin{pmatrix} yz^2\\ xz^2\\ 2xyz \end{pmatrix} = \lambda \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}$

This leads to $x = y = \frac{C}{4}$ and $z = \frac{C}{2}$. Thus, there is only one candidate in the interior: $f(\frac{C}{4}, \frac{C}{4}, \frac{C}{2}) = \frac{C^4}{64}$.

We then check the boundary, i.e., one of x, y, z is 0 or C. If x = 0, then $f(x, y, z) = 0 < \frac{C^4}{64}$. If x = C, then since x + y + z = C and $x, y, z \ge 0$, we must have y = z = 0, so that $f(x, y, z) = 0 < \frac{C^4}{64}$. The same thing happens if y = 0 or y = C or z = 0 or z = C.

Therefore, the maximum of xyz^2 subject to the constraint x + y + z = C is $\frac{C^4}{64}$.